首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A method named "bag culture" was developed for coculturing of Linum persicum (section Syllinum) and L. austriacum (section Linum) hairy roots. For this propose L. austriacum and L. persicum hairy root cultures were established using Agrobacterium rhizogenes in McCown medium. L. persicum hairy roots in bags (1 mm2 mesh) were successfully grown together with L. austriacum hairy roots. The amounts of podophyllotoxin (PTOX) and 6-methoxypodophyllotoxin (MPTOX) produced by L. persicum hairy root cultures were detected using HPLC. The results indicated that the amounts of both lignans and growth indexes of the two hairy roots decreased, that may be partly due to a competition between the two types of culture in using precursors of biosynthetic metabolites and the amount of culture medium which is available for each hairy root. However, MPTOX (0.17 g/100 g DW) and PTOX (0.02 g/100 g DW) levels of the L. persicum single culture in bag were significantly higher than of the other cultures which may be due to the immobilization effect of the bag.  相似文献   

2.
Federolf K  Alfermann AW  Fuss E 《Phytochemistry》2007,68(10):1397-1406
Suspension cultures initiated from two different Linum album seedlings accumulate either podophyllotoxin (PTOX, 2.6 mg/g DW) or 6-methoxypodophyllotoxin (6MPTOX, 5.4 mg/g DW) as main lignans. Two molecules of coniferyl alcohol are dimerized to pinoresinol which is converted via several steps into deoxypodophyllotoxin (DOP) which seems to be the branching point to PTOX or 6MPTOX biosynthesis. DOP is hydroxylated at position 7 to give PTOX by deoxypodophyllotoxin 7-hydroxylase (DOP7H). In contrast, 6MPTOX biosynthesis is achieved by DOP hydroxylation at position 6 to beta-peltatin by the cytochrome P450 enzyme deoxypodophyllotoxin 6-hydroxylase (DOP6H). The following methylation to beta-peltatin-A-methylether is catalyzed by beta-peltatin 6-O-methyltransferase (betaP6OMT) from which 6MPTOX is formed by hydroxylation at position 7 by beta-peltatin-A-methylether 7-hydroxylase (PAM7H). DOP6H and betaP6OMT could be characterized in protein extracts from cell cultures of L. flavum and L. nodiflorum, respectively, and here in L. album for the first time. DOP7H and PAM7H activities could not yet be detected with protein extracts. Experiments of feeding DOP together with inhibitors of cytochrome P450 depending as well as dioxygenase enzymes were performed in order to shed light on the type of DOP7H and PAM7H. Growth parameters and specific activities of enzymes from the phenylpropane as well as the lignan specific biosynthetic pathway were measured during a culture period of 16 days. From the enzymes studied only the DOP6H showed a differential activity sustaining the hypothesis that this enzyme is responsible for the differential lignan accumulation in both cell lines.  相似文献   

3.
The percentage of podophyllotoxin (PTOX) and its congener lignans were measured by HPLC in Linum mucronatum ssp. mucronatum (Linaceae) fresh plant organs. The highest amounts of PTOX (0.595 +/- 0.060% g/g dry wt) and 6-methoxypodophyllotoxin (MPTOX) (1.491 +/- 0.125% g/g dry wt) were found in the plant sexual organs. Whereas, the highest levels of beta-peltatin, 5'-demethoxy-MPTOX and yatein were found in not developed buds, petals and sepals, respectively.  相似文献   

4.
Cell cultures of Linum species store 6-methoxypodophyllotoxin (MPTOX), podophyllotoxin (PTOX) and related lignans as O-glucosides. UDP-glucose:(M)PTOX 7-O-glucosyltransferase has been detected and characterised in protein preparations of suspension-cultured cells of Linum nodiflorum L. (Linaceae). The maximal lignan glucoside contents in the cells are preceded by a rapid increase of the specific glucosyltransferase activity on day six of the culture period. MPTOX glucoside is the major lignan with up to 1.18 mg g(-1) of the cell dry wt which is more than 30-fold of the PTOX glucoside content. Of the three aryltetralin lignans tested as substrates, PTOX and MPTOX display comparable apparent K(m) values of 4.7 and 5.4 microM, respectively. 5'-Demethoxy-6-methoxypodophyllotoxin is converted with the highest velocity of 25.2 pkat mg(-1) while also possessing a higher K(m) of 14.7 microM. Two-substrate test series indicate that all three compounds compete for the active site of a single protein. The structurally similar lignan beta-peltatin acts as competitive inhibitor as well. However, the 6-O-glucosidation is most likely catalysed by a separate enzyme. The (M)PTOX 7-O-glucosyltransferase works best at a pH around 9 and a temperature around 35 degrees C. A 15-30% increase of the reaction rate is effected by the addition of 0.9 mM Mn(2+).  相似文献   

5.
Linum album has been shown to accumulate anti-tumor podophyllotoxin (PTOX) and its related lignans. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [140μgg(-1) dry weight (DW) of the L. album cell culture] which is seven-fold greater than the untreated control, while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol, instead of PTOX, up to 365μgg(-1) DW, which was 8.8-fold greater than the control. Quantitative PCR analyses showed that expression of the enzyme genes responsible for the PTOX biosynthesis cascade, such as pinoresinol-lariciresinol reductase (PLR), phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD) genes, were also up-regulated in a fungal extract-selective fashion. These results provide evidence that the fungal extracts used in this study differentially increase the production of PTOX or larisiresinol via the up-regulation of the genes in lignan biosynthesis in L. album cell cultures, and suggest that such selective actions of fungal elicitors on the lignan synthesis will lead to more efficient metabolic engineering-based production of PTOX and other beneficial lignans using L. album cell cultures.  相似文献   

6.
The accumulation of podophyllotoxin (PTOX) and 6-methoxypodophyllotoxin (6MPTOX) was enhanced about twofold in the suspension culture of Linum album line 2-5 aH following the addition of methyl jasmonate (MeJas) to the cultivation medium, reaching 7.69±1.45 mg/g dry weight and 1.11±0.09 mg/g dry weight, respectively. There was no increase in 6MPTOX accumulation following the addition of MeJas to suspension cells of L. album line X4SF, whereas PTOX accumulation was enhanced about tenfold to 0.49±0.10 mg/g dry weight. Phenylalanine ammonia-lyase activity increased immediately after the addition of MeJas to a cell suspension culture of line X4SF, reaching a maximum between 4 h and 1 day after elicitation, while cinnamyl alcohol dehydrogenase activity and the lignin content of the cells were not affected.  相似文献   

7.
Linum album has been shown to accumulate some lignans with antiviral and anticancer properties such as podophyllotoxin (PTOX) and 6-methoxy podophyllotoxin (MPTOX). In this research, we examined the effects of fungal elicitors on the production of lignans in L. album hairy root cultures. The biosynthesis of lignans was differentially affected by fungal elicitors. Fusarium graminearum extract induced the highest increase of PTOX, 190 μg g?1 dry weight (DW), and lariciresinol, 260 μg g?1 DW, which was two-fold and three-fold greater than the untreated control, respectively, while Trichoderma viride extract enhanced the accumulation of MPTOX, instead of PTOX, up to 160 µg g?1 DW, which was 2.4-fold greater than the control. The enhancing effects of fungal elicitors on lignans production was correlated with the increased expression of some key genes involved in the biosynthesis of these compounds, phenylalanine ammonia-lyase, cinnamoyl-CoA reductase, cinnamyl-alcohol dehydrogenase and pinoresinol-lariciresinol reductase.  相似文献   

8.
Aryltetralin lignans (podophyllotoxin type) are the main lignan constituents of species belonging to Linum section Syllinum (Linaceae). Linum persicum, a perennial plant native to Iran closely related to L. album, has not yet been studied. To evaluate the lignan profile, fresh plants of L. persicumwere collected and divided into different parts and analyzed by HPLC. The main aryltetralin lignans found inL. persicumplant parts, callus and cell cultures were podophyllotoxin (PTOX), 6-methoxypodophyllotoxin (MPTOX) and - and -peltatin. Furthermore, the systematic relationship between L. persicum and other Linum species are discussed in the light of morphological and phytochemical aspects. Abbreviations: MPTOX – 6-methoxypodophyllotoxin; PTOX – podophyllotoxin; DOP – deoxypodophyllotoxin.  相似文献   

9.
Linum album accumulates anti-tumor podophyllotoxin (PTOX) and its related lignans, which were originally isolated from an endangered species Podophyllum. In the present study, we examined the effects of five fungal extracts on the production of lignans in L. album cell cultures. Fusarium graminearum extract induced the highest increase of PTOX [143 μg g−1 dry weight (DW) of the L. album cell culture], while Rhizopus stolonifer extract enhanced the accumulation of lariciresinol up to 364 μg g−1 DW, instead of PTOX. Typical elicitors, such as chitin, chitosan, or methyl jasmonate (MeJA), were shown to be less effective in lignan production in L. album cell cultures. These results verified the advantages of fungal extracts to increase lignan production in L. album cell culture, and suggested potential on-demand metabolic engineering of lignan biosynthesis using differential fungal extracts.  相似文献   

10.
The effect of oxidative stress on indole alkaloids accumulation by cell suspensions and root cultures of Uncaria tomentosa in bioreactors was investigated. Hydrogen peroxide (H2O2, 200 μM) added to U. tomentosa cell suspension cultures in shaken flasks induced the production of monoterpenoid oxindole alkaloids (MOA) up to 40.0 μg/L. In a stirred tank bioreactor, MOA were enhanced by exogenous H2O2 (200 μM) from no detection up to 59.3 μg/L. Root cultures grew linearly in shaken flasks with a μ=0.045 days?1 and maximum biomass of 12.08±1.24 g DW/L (at day 30). Roots accumulated 3α‐dihydrocadambine (DHC) 2354.3±244.8 μg/g DW (at day 40) and MOA 348.2±32.1 μg/g DW (at day 18). Exogenous addition of H2O2 had a differential effect on DHC and MOA production in shaken flasks. At 200 μM H2O2, MOA were enhanced by 56% and DHC by 30%; while addition of 800 and 1000 μM H2O2, reduced by 30–40% DHC accumulation without change in MOA. Root cultures in the airlift reactor produced extracellular H2O2 with a characteristic biphasic profile after changing aeration. Maximum MOA was 9.06 mg/L at day 60 while at this time roots reached ca. 1 mg/L of DHC. Intracellular H2O2 in root cultures growing in the bioreactor was 0.87 μmol/g DW compared to 0.26 μmol/g DW of shaken flasks cultures. These results were in agreement with a higher activity of the antioxidant enzymes superoxide dismutase and peroxidase by 6‐ and 2‐times, respectively. U. tomentosa roots growing in the airlift bioreactor were exposed to an oxidative stress and their antioxidant system was active allowing them to produce oxindole alkaloids.  相似文献   

11.
For the first time callus and suspension cultures of Linum mucronatum ssp. annenum were initiated, grown in darkness at 25 degrees C and analyzed for lignans. 6-Methoxypodophyllotoxin was the main lignan besides smaller amounts of podophyllotoxin isolated and identified by chromatographic methods as well as by 1H NMR.  相似文献   

12.
Cell suspension cultures of Linum album were developed from internode portions of in vitro germinated plant in Gamborg's B5 medium supplemented with 0.4 mg naphthalene acetic acid/l. The highest biomass was 8.5 g/l with podophyllotoxin and 6-methoxypodophyllotoxin at 29 and 1.9 mg/l, respectively after 12 d cultivation. Co-cultures of L. album cells with axenically cultivable arbuscular mycorrhiza-like fungi, Piriformospora indica and Sebacina vermifera, were established for the first time. These enhanced podophyllotoxin and 6-methoxypodophyllotoxin production by about four- and eight-fold, respectively, along with a 20% increase in biomass compared to the control cultures.  相似文献   

13.
Lignans and neolignans are important biologically active ingredients (BAIs) biosynthesized by Linum usitatissimum. These BAIs have multi-dimensional effects against cancer, diabetes and cardio vascular diseases. In this study, yeast extract (YE) was employed as an elicitor to evaluate its effects on dynamics of biomass, BAIs and antioxidant activities in L. usitatissimum cell cultures. During preliminary experiments, flax cultures were grown on different concentrations of YE (0–1000 mg/L), and 200 mg/L YE was found to be optimum to enhance several biochemical parameters in these cell cultures. A two-fold increase in fresh (FW) and dry weight (DW) over the control was observed in cultures grown on MS medium supplemented with 200 mg/L YE. Similarly, total phenolic (TPC; 16 mg/g DW) and flavonoids content (TFC; 5.1 mg/g DW) were also positively affected by YE (200 mg/L). Stimulatory effects of YE on biosynthesis of lignans and neolignans was also noted. Thus, 200 mg/L of YE enhanced biosynthesis of secoisolariciresinol diglucoside (SDG; 3.36-fold or 10.1 mg/g DW), lariciresinol diglucoside (LDG; 1.3-fold or 11.0 mg/g DW) and dehydrodiconiferyl alcohol glucoside (DCG; 4.26-fold or 21.3 mg/g DW) in L. usitatissimum cell cultures with respect to controls. This elicitation strategy could be scaled up for production of commercially feasible levels of these precious metabolites by cell cultures of Linum.  相似文献   

14.
Treatment of Linum album cell cultures with 10 μM salicylic acid (SA) for 3 days improved podophyllotoxin (PTOX) production up to 333 μg/g dry weight (DW): over three times that of the control cultures. qPCR analyses showed that in SA-treated cells, the expression of the genes coding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD), all involved in the first steps of PTOX biosynthesis, also increased reaching a peak 8–12 h after the treatment. Expression of the pinoresinol-lariciresinol reductase gene (PLR), which is involved in one of the last biosynthetic steps, was not affected by SA. The selective action of SA on these genes can be applied to control the biotechnological production of this anticancer agent.  相似文献   

15.
Ajuga bracteosa is a medicinally important plant globally used in the folk medicine against many serious ailments. In the present study, effects of two significant elicitors, methyl jasmonate (Me-J) and phenyl acetic acid (PAA) were studied on growth parameters, secondary metabolites production, and antioxidant potential in adventitious root suspension cultures of A. bracteosa. The results showed a substantial increase in biomass accumulation, exhibiting longer log phases of cultures growth in response to elicitor treatments, in comparison to control. Maximum dry biomass formation (8.88 DW g/L) was recorded on 32nd day in log phase of culture when  0.6 mg/L Me-J was applied; however, PAA at 1.2 mg/L produced maximum biomass (8.24 DW g/L) on day 40 of culture.  Furthermore, we observed the elicitors-induced enhancement in phenolic content (total phenolic content), flavonoid content (total flavonoid content) and antioxidant activity (free radical scavenging activity) in root suspension cultures of A. bracteosa. Application of 0.6 mg/L and 1.2 mg/L of Me-J, root cultures accumulated higher TPC levels (3.6 mg GAE/g DW) and (3.7 mg GAE/g DW) in the log phase and stationary phase, respectively, while 2.5 mg/L Me-J produced lower levels (1.4 mg GAE/g DW) in stationary phase of growth stages. Moreover, TFC and FRSA values were found in correspondence to TPC values in the respective growth phases at the similar elicitor treatment. Thus, a feasible protocol for establishment of adventitious roots in A. bracteosa was developed and enhancement in biomass and metabolite content in adventitious root was promoted through elicitation.  相似文献   

16.
Linum usitatsimum L. (flax) is a perennial herb with magnitude of medicinal and commercial applications. In the present study, we investigated the effects of salicylic acid (SA) on biosynthesis of lignans (secoisolariciresinol diglucoside (SDG) and lariciresinol diglucoside (LDG)) and neolignans (dehydrodiconiferyl alcohol glucoside (DCG) and guaiacylglycerol‐β‐coniferyl alcohol ether glucoside (GGCG)) in cell cultures of flax. Moderate concentration of SA (50 μM) enhanced biomass accumulation (10.98 g/L dry weight (DW)), total phenolic content (37.81 mg/g DW), and antioxidant potential (87.23%) to two‐fold than their respective controls after 72 h of exposure. However, higher levels of total flavonoid content (5.32 mg/g DW) were noted after 48 h of exposure to 50 μM of SA. HPLC analyses revealed that 50 μM SA, significantly enhanced biosynthesis of SDG (7.95 mg/g DW), LDG (7.52 mg/g DW), DCG (54.90 mg/g DW), and GGCG (16.78 mg/g DW), which was almost 2.7, 1.8, 3.88, and 3.98 fold higher than their respective controls after 72 h of exposure time, respectively. These results indicated that moderate concentrations of SA had significant effects on biosynthesis and productivity of lignans and neolignans in cell culture of L. usitatissimum.  相似文献   

17.
葡萄细胞悬浮培养生产白藜芦醇   总被引:1,自引:0,他引:1  
以巨峰葡萄果皮为外植体,在添加2.0 mg/L 6-苄基嘌呤(6-BA)和0.1 mg/L 2,4-二氯苯氧基(2,4-D)的B5培养基上诱导葡萄愈伤组织; 以50 g/L的初始接种量在添加1.0 mg/L 6-BA和0.05 mg/L 2,4-D的B5液体培养基上建立葡萄悬浮培养体系。在25~27 ℃下,摇床振荡暗培养(120~130 r/min)18 d后,葡萄细胞生物量和白藜芦醇含量达到最大值(16.17 g/L、95.69 μg/g干质量)。在培养第12天时,向培养基中添加100 μmol/L茉莉酸甲酯(MeJA),经过6 d处理,细胞中白藜芦醇含量达235.73 μg/g干质量。  相似文献   

18.
Polygonum multiflorum Thunb. is an important medicinal plant that synthesizes an array of phenolic compounds. Its roots are used in a variety of pharmacological and cosmetic formulations, notably as hair dye. In the present study, the inoculum density (3–15 g/L) and culture period (1–7 weeks) were optimized in a 3 L bioreactor. High root biomass (14.18 g/L dry weight (DW)) was recorded with an inoculum of 7 g/L (p?≤?0.05), which is consistent with the results for 5 and 10 g/L. However, significantly higher yield of bioactive compounds (53.87 mg/g DW total phenolics and 27.96 mg/g DW total flavonoids) with high free radical scavenging activity was obtained in root samples from 5 g/L inoculum density. A 4 week culture period was sufficient for optimum root growth and metabolite production. The optimized conditions were used for large-scale (5 and 20 L) and pilot-scale (500 L) studies. Considering that the continuous aeration of root cultures may lead to oxidative stress, antioxidant enzyme activity and lipid peroxidation also were studied. The results revealed high catalase (CAT) and guaiacol peroxidase (G-POD) activities, and low malondialdehyde (MDA) production, with increasing culture scale (20 and 500 L), which may indicate low-level oxidative damage to the cultures. An optimal yield of 4.01 kg dry root biomass with 287.12 mg/L of total phenolic productivity was achieved in a 500 L pilot-scale bioreactor. This work can pave the way for commercial production of biomass and secondary metabolites at the industrial level, and meet the rising demand for natural ingredients, especially in the pharmaceutical and cosmetic industries.  相似文献   

19.
Various cell and hairy root cultures of L. album were developed and analyzed for podophyllotoxin content. Transformed callus and hairy root cultures developed from infection of stem portions of in vitro-germinated L. album plant with Agrobacterium rhizogenes NCIM 5140 strain were selected on the basis of high podophyllotoxin content and growth. Based on the integration of Ri T(L)-DNA and T(R)-DNA, integration of only the ags and not the rol gene in transformed cell culture indicated fragmented integration pattern. The effect of different cultivation media and carbon source on growth and podophyllotoxin production were studied in shake-flask suspension cultures. Detailed batch growth and production kinetics with sugar consumption profile were also established. Maximum volumetric productivity of 4.40 and 2.75 mg/L per day was obtained in cell suspension and hairy root cultures, respectively.  相似文献   

20.
Plumbago indica L. is an important source of plumbagin, a commercially valuable bioactive compound. However, the uses of plumbagin are limited due to its low supply as well as low yields and slow growth of the plant sources. This study evaluated the use of a simple, easy, and low‐cost approach using heat shock (HS) and ultrasound (US), and an in situ adsorption using a nonpolar copolymer adsorbent styrene‐divynilbenzene resin (Diaion® HP‐20) to enhance plumbagin production in Plumbago indica root cultures. Treatment with HS (60°C) for 10 min significantly increased the production of plumbagin (5.51 mg/g DW) by up to five‐fold, compared to the level in untreated root cultures (1.14 mg/g DW). In contrast, treatments with US alone or with HS treatment produced no satisfactory increase of plumbagin production. However, combined treatment of a 20‐day‐old root culture with HS (60°C, for 10 min) in the presence of Diaion® HP‐20 (10 g/L) markedly increased the production up to 20.28 mg/g DW of plumbagin that was almost 14‐fold higher, compared to the level in an untreated root culture. Such an increase would be sufficient for commercial applications of this method to produce plumbagin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号