首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Temperature fluctuation profoundly affects the plant growth and development. In this study, we show that ethylene receptor ETR1 is involved in regulating leaf petiole elongation mediated by higher temperatures (at 32 °C in this study). ETR1 loss-of-function mutant etr1-7 cannot elongate the leaf petiole at 32 °C as much as wild-type seedlings (WT). Overexpression of ETR1 in etr1-7 not only fully rescued the deficient in petiole elongation under higher temperature conditions but also caused longer petiole length under normal temperature conditions (22 °C). Plants with different mutant ETR1 alleles including etr1-7 etr1-1, and etr1-9 but not etr1-3 impair the petiole elongation mediated by elevated temperature. RNA-Seq analysis showed that hundreds of genes induced by elevated temperature in WT were not differentially expressed in etr1-7. Gene ontology enrichment analysis reveals that the molecular functions of these genes primarily relate to photosynthesis and protein degradation. Furthermore, genes involved in regulating organ elongation (such as BRI1-EMS-SUPPRESSOR 1, BES1), are significantly up-regulated in WT rather than in etr1-7 after the treatment of higher temperature. The results from this study suggest ETR1 is involved in regulating Arabidopsis response to elevated ambient temperature in both molecular and morphological levels.  相似文献   

2.
The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane‐bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor‐interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi‐fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1‐1 and etr1‐2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis.  相似文献   

3.
Ethylene regulates the timing of leaf senescence in Arabidopsis   总被引:20,自引:7,他引:13  
The plant hormone ethylene influences many aspects of plant growth and development, including some specialized forms of programmed senescence such as fruit ripening and flower petal senescence. To study the relationship between ethylene and leaf senescence, etr1-1, an ethylene-insensitive mutant in Arabidopsis, was used. Comparative analysis of rosette leaf senescence between etr1-1 and wild-type plants revealed that etr1-1 leaves live approximately 30% longer than the wild-type leaves. Delayed leaf senescence in etr1-1 coincided with delayed induction of senescence-associated genes (SAGs) and higher expression levels of photosynthesis-associated genes (PAGs). In wild-type plants, exogenous ethylene was able to further accelerate induction of SAGs and decrease expression of PAGs. The extended period of leaf longevity in etr1-1 was associated with low levels of photosynthetic activity. Therefore, the leaves in etr1-1 functionally senesced even though the apparent life span of the leaf was prolonged.  相似文献   

4.
5.
Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the α-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.  相似文献   

6.
Ethylene, a regulator of plant growth and development, is perceived by specific receptors that act as negative regulators of the ethylene response. Five ethylene receptors, i.e., ETR1, ERS1, EIN4, ETR2, and ERS2, are present in Arabidopsis and dominant negative mutants of each that confer ethylene insensitivity have been reported. In contrast, maize contains just two types of ethylene receptors: ZmERS1, encoded by ZmERS1a and ZmERS1b, and ZmETR2, encoded by ZmETR2a and ZmETR2b. In this study, we introduced a Cys to Tyr mutation in the transmembrane domain of ZmERS1b and ZmETR2b that is present in the etr1-1 dominant negative mutant and expressed each protein in Arabidopsis. Mutant Zmers1b and Zmetr2b receptors conferred ethylene insensitivity and Arabidopsis expressing Zmers1b or Zmetr2b were larger and exhibited a delay in leaf senescence characteristic of ethylene insensitive Arabidopsis mutants. Zmers1b and Zmetr2b were dominant and functioned equally well in a hemizygous or homozygous state. Expression of the Zmers1b N-terminal transmembrane domain was sufficient to exert dominance over endogenous Arabidopsis ethylene receptors whereas the Zmetr2b N-terminal domain failed to do so. Neither Zmers1b nor Zmetr2b functioned in the absence of subfamily 1 ethylene receptors, i.e., ETR1 and ERS1. These results suggest that Cys65 in maize ZmERS1b and ZmETR2b plays the same role that it does in Arabidopsis receptors. Moreover, the results demonstrate that the mutant maize ethylene receptors are functionally dependent on subfamily 1 ethylene receptors in Arabidopsis, indicating substantial functional conservation between maize and Arabidopsis ethylene receptors despite their sequence divergence.  相似文献   

7.

Background  

Ethylene receptor single mutants of Arabidopsis do not display a visibly prominent phenotype, but mutants defective in multiple ethylene receptors exhibit a constitutive ethylene response phenotype. It is inferred that ethylene responses in Arabidopsis are negatively regulated by five functionally redundant ethylene receptors. However, genetic redundancy limits further study of individual receptors and possible receptor interactions. Here, we examined the ethylene response phenotype in two quadruple receptor knockout mutants, (ETR1) ers1 etr2 ein4 ers2 and (ERS1) etr1 etr2 ein4 ers2, to unravel the functions of ETR1 and ERS1. Their functions were also reciprocally inferred from phenotypes of mutants lacking ETR1 or ERS1. Receptor protein levels are correlated with receptor gene expression. Expression levels of the remaining wild-type receptor genes were examined to estimate the receptor amount in each receptor mutant, and to evaluate if effects of ers1 mutations on the ethylene response phenotype were due to receptor functional compensation. As ers1 and ers2 are in the Wassilewskija (Ws) ecotype and etr1, etr2, and ein4 are in the Columbia (Col-0) ecotype, possible effects of ecotype mixture on ethylene responses were also investigated.  相似文献   

8.
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter‐regulated expression of the Arabidopsis ethylene receptor mutant ethylene‐insensitive1‐1 (etr1‐1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1‐1‐expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1‐1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1‐1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence‐related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1‐1 expression alters tolerance to pathogens.  相似文献   

9.
The responses of 14-day-old Arabidopsis thaliana (L.) Heynh. plants to UV-B irradiation (280–320 nm) and ABA treatment were investigated. Wild-type plants as well as ethylene-insensitive etr1-1 and ctr1-1 mutants were used. Theetr1-1 mutant considerably differed from the ctr1-1 one in the fresh weight production after UV-B treatment (29.5 kJ/m2). The irradiated etr1-1 plants fell well behind the nonirradiated ones during the first two days after stress, but by the 8th day, their weight attained 70% of control plant weight. In contrast, Ctr1-1 mutant weight comprised 70% of control level after two days of stress but, by the 8th day, it was only 56% of the weight of control plants. In wild-type and ctr1-1 plants, ABA, in the 8 × 10–6 to 2 × 10–4 M concentration range, increased the difference between the weights of nonirradiated and irradiated plants, but in etr1-1 plants, ABA decreased this difference. The etr1-1, ctr1-1, and wild-type plants were very similar in the dynamics of ethylene evolution after UV-B treatment (7.4 kJ/m2). In wild-type, etr1-1, and ctr1-1 plants, ABA, in a concentration-dependent manner, inhibited UV-B-induced ethylene evolution to the same extent. The results obtained show that ABA exerted an opposite effect on UV-B-dependent growth in the plants with active (wild type and ctr1-1) and blocked (etr1-1) ethylene signal pathway, whereas the inhibition of ethylene synthesis by ABA was not related to ethylene signal transmission.  相似文献   

10.
Regulation of soybean nodulation independent of ethylene signaling   总被引:5,自引:1,他引:4  
Leguminous plants regulate the number of Bradyrhizobium- or Rhizobium-infected sites that develop into nitrogen-fixing root nodules. Ethylene has been implicated in the regulation of nodule formation in some species, but this role has remained in question for soybean (Glycine max). The present study used soybean mutants with decreased responsiveness to ethylene, soybean mutants with defective regulation of nodule number, and Ag+ inhibition of ethylene perception to examine the role of ethylene in the regulation of nodule number. Nodule numbers on ethylene-insensitive mutants and plants treated with Ag+ were similar to those on wild-type plants and untreated plants, respectively. Hypernodulating mutants displayed wild-type ethylene sensitivity. Suppression of nodule numbers by high nitrate was also similar between ethylene-insensitive plants, wild-type plants, and plants treated with Ag+. Ethylene insensitivity of the roots of etr1-1 mutants was confirmed using assays for sensitivity to 1-aminocyclopropane-1-carboxylic acid and for ethylene-stimulated root-hair formation. Additional phenotypes of etr1-1 roots were also characterized. Ethylene-dependent pathways regulate the number of nodules that form on species such as pea and Medicago truncatula, but our data indicate that ethylene is less significant in regulating the number of nodules that form on soybean.  相似文献   

11.
Diverse functions of ethylene in plants may depend on its ability to interact with other hormones. We studied the participation of ethylene in the regulation of accumulation and metabolism of cytokinins comparing ethylene-insensitive mutant plants of arabidopsis (Arabidopsis thaliana [L.] Heynh., etr1-1) with the plants of original ecotype Columbia (Col-0). Because cytokinins can regulate growth of both leaves and roots, we determined the weights of these organs and the ratio between them. The content of zeatin and its riboside in the roots of etr1-1 plants was two times greater than in Col-0 plants, which could be accounted for by inhibition of conversion of these forms of cytokinins into 9-N-glucosides. In the leaves of mutant plants, expression of IPT3 gene responsible for the synthesis of cytokinins was more intense than in Col-0 plants, which could also contribute to a rise in the content of cytokinins. In this case, the weight of roots in etr1-1 mutants was lower than in the plants of original ecotype. Because high concentrations of cytokinins can inhibit root growth, suppression of accumulation of their biomass in mutant plants may be related to a greater content of cytokinins therein. The obtained results suggest that ethylene can suppress accumulation of cytokinins and, thereby, maintain redistribution of biomass in favor of the roots, which is important for plant adaptation to a shortage of water and ions.  相似文献   

12.
The role of ethylene in plant development is mostly inferred from its exogenous application. The usage of mutants affecting ethylene biosynthesis proffers a better alternative to decipher its role. In tomato (Solanum lycopersicum), 1-aminocyclopropane carboxylic acid synthase2 (ACS2) is a key enzyme regulating ripening-specific ethylene biosynthesis. We characterised two contrasting acs2 mutants; acs2-1 overproduces ethylene, has higher ACS activity, and has increased protein levels, while acs2-2 is an ethylene underproducer, displays lower ACS activity, and has lower protein levels than wild type. Consistent with high/low ethylene emission, the mutants show opposite phenotypes, physiological responses, and metabolomic profiles compared with the wild type. The acs2-1 mutant shows early seed germination, faster leaf senescence, and accelerated fruit ripening. Conversely, acs2-2 has delayed seed germination, slower leaf senescence, and prolonged fruit ripening. The phytohormone profiles of mutants were mostly opposite in the leaves and fruits. The faster/slower senescence of acs2-1/acs2-2 leaves correlated with the endogenous ethylene/zeatin ratio. The genetic analysis showed that the metabolite profiles of respective mutants co-segregated with the homozygous mutant progeny. Our results uncover that besides ripening, ACS2 participates in the vegetative and reproductive development of tomato. The distinct influence of ethylene on phytohormone profiles indicates the intertwining of ethylene action with other phytohormones in regulating plant development.  相似文献   

13.
Tocopherol biosynthesis was investigated in ein3-1, etr1-1 and eto1-1 mutants of Arabidopsis thaliana, which show a defect in ethylene signaling, perception and over-produce ethylene, respectively. A mutation in the EIN3 gene delayed the water-stress related increase in α-tocopherol and caused a reduction in the levels of this antioxidant by ca. 30% compared to the wild type. In contrast to the wild type and ein3-1 mutants, both etr1-1 and eto1-1 mutants showed a sharp (up to 5-fold) increase in α-tocopherol levels during leaf aging. It is concluded that ethylene perception and signaling may be involved in the regulation of tocopherol biosynthesis during water stress and leaf aging.  相似文献   

14.
Flowers of the complex orchid hybrid Burrageara ‘Stefan Isler Lava Flow’ had been shown previously to react sensitively to ethylene. Via Agrobacterium tumefaciens, the mutant ethylene receptor ETHYLENE RESPONSE 1 (etr1-1) from Arabidopsis thaliana under the control of the flower-specific promoter FLOWER BINDING PROTEIN 1 (fbp1) from Petunia hybrida was transferred to Burrageara. One single-copy event was analyzed in this study aiming to investigate the expression of the fbp1::etr1-1 transgene in different plant and flower organs by quantitative RT-PCR and the reaction of flowers and inflorescences to ethylene. It was shown that the heterologous promoter led to high expression levels in the perianth of the orchid flowers compared to low levels in leaves and roots. The expression shift to the first whorl (sepals) described here corresponds to extended expression of endogenous B class MADS box homeotic genes in orchids in general. The transgenic plants grew and developed similar to the wild-type plants, except for slightly faster rooting in vitro and smaller flowers. Flower longevity was improved by 7 days in 10 ppm ethylene. Moreover, bud drop starting at day 5 of incubation of inflorescences in 10 ppm ethylene in the wild-type was efficiently prevented for at least 19 days in the fbp1::etr1-1 transgenic plants. The function of the tissue-specific promoter fbp1 and the mutant receptor etr1-1 was shown for the first time in a monocotyledonous plant.  相似文献   

15.
16.
Leaf senescence is a developmentally programmed event, but the initiation and progression of leaf senescence are affected by a range of plant hormones including abscisic acid (ABA), ethylene and methyl jasmonate (MeJA). To investigate plant hormone crosstalk during leaf senescence, hormone-induced senescence phenotypes were analyzed in three leaf senescence mutants [ore1 (oresara1), ore3 and ore9] showing delayed senescence phenotypes in age-dependent and dark-induced senescence. The ore mutants exhibited delayed leaf senescence phenotypes following treatment with ABA, ACC (aminocyclo-propane-1-carboxylic acid) or MeJA. After each hormone treatment, the photochemical efficiency of photosystem II and chlorophyll content were significantly higher in the ore mutant leaves than in the wild-type leaves. The expression of CAB2 and SEN4 in the wild-type was rapidly altered following each hormone treatment. However, the decrease in CAB2 expression and the induction of SEN4 expression in the mutants were less affected by ABA, ACC or MeJA treatment. It is suggested that ORE1, ORE3 and ORE9 are required for the proper progression of leaf senescence mediated by ABA, ethylene and MeJA. This implies that ORE1, ORE3 and ORE9 may be linked to the crosstalk among senescence pathways induced by ABA, ethylene and MeJA, as well as age and darkness.  相似文献   

17.
18.
19.
Although abscisic acid (ABA) and ethylene have antagonistic functions in the control of plant growth and development, including seed germination and early seedling development, it remains unknown whether a convergent point exists between these two signaling pathways or whether they operate in parallel in Arabidopsis thaliana. To elucidate this issue, four ethylene mutants, ctr1, ein2, ein3, and ein6, were crossed with aba2 (also known as gin1-3) to generate double mutants. Genetic epistasis analysis revealed that all of the resulting double mutants displayed aba2 mutant phenotypes with a small plant size and wiltiness when grown in soil or on agar plates. Further ethylene sensitivity or triple response analyses demonstrated that these double mutants also retained the ctr1 or ein mutant phenotypes, showing ethylene constitutive triple and insensitive responses, respectively. Our current data therefore demonstrate that ABA and ethylene act in parallel, at least in primary signal transduction pathways. Moreover, by microarray analysis we found that an ACC oxidase (ACO) was significantly upregulated in the aba2 mutant, whereas the 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) gene in ein2 was upregulated, and both the ABSCISIC ACID INSENSITIVE1 (ABI1) and cytochrome P450, family 707, subfamily A, polypeptide 2 (CYP707A2) genes in etr1-1 were downregulated. These data further suggest that ABA and ethylene may control the hormonal biosynthesis, catabolism, or signaling of each other to enhance their antagonistic effects upon seed germination and early seedling growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号