首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The biocontrol agent Pythium oligandrum and its elicitin‐like proteins oligandrins have been shown to induce disease resistance in a range of plants. In the present study, the ability of two oligandrins, Oli‐D1 and Oli‐D2, to induce an immune response and the possible molecular mechanism regulating the defence responses in Nicotiana benthamiana and tomato were investigated. Infiltration of recombinant Oli‐D1 and Oli‐D2 proteins induced a typical immune response in N. benthamiana including the induction of a hypersensitive response (HR), accumulation of reactive oxygen species and production of autofluorescence. Agrobacterium‐mediated transient expression assays revealed that full‐length Oli‐D1 and Oli‐D2 were required for full HR‐inducing activity in N. benthamiana, and virus‐induced gene silencing‐mediated knockdown of some of the signalling regulatory genes demonstrated that NbSGT1 and NbNPR1 were required for Oli‐D1 and Oli‐D2 to induce HR in N. benthamiana. Subcellular localization analyses indicated that both Oli‐D1 and Oli‐D2 were targeted to the plasma membrane of N. benthamiana. When infiltrated or transiently expressed in leaves, Oli‐D1 and Oli‐D2 induced resistance against Botrytis cinerea in tomato and activated the expression of a set of genes involved in the jasmonic acid/ethylene (JA/ET)‐mediated signalling pathway. Our results demonstrate that Oli‐D1 and Oli‐D2 are effective elicitors capable of inducing immune responses in plants, probably through the JA/ET‐mediated signalling pathway, and that both Oli‐D1 and Oli‐D2 have potential for the development of bioactive formulae for crop disease control in practice.  相似文献   

8.
Cis‐(+)‐12‐oxo‐phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12‐oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3‐1 and SiOPR3‐2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA‐Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen‐induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3‐1 and SiOPR3‐2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.  相似文献   

9.
The Arabidopsis thaliana etr1-1 allele, capable of conferring ethylene insensitivity in a heterologous host, was introduced into transgenic carnation plants. This gene was expressed under control of either its own promoter, the constitutive CaMV 35S promoter or the flower-specific petunia FBP1 promoter. In about half of the transgenic plants obtained flower senescence was delayed by at least 6 days relative to control flowers, with a maximum delay of 16 days, a 3-fold increase in vase life. These flowers did not show the petal inrolling phenotype typical of ethylene-dependent carnation flower senescence. Instead, petals remained firm and finally started to rot and decolorize.In transgenic plants with delayed flower senescence, expression of the Arabidopsis etr1-1 gene was detectable and the expression pattern followed the activity of the upstream promoter. In these flowers expression of the ACO1 gene, encoding the final enzyme in the ethylene biosynthesis pathway, ACC oxidase, was down-regulated. This indicates that the autocatalytic induction of ethylene biosynthesis, required to initiate and regulate the flower senescence process, is absent in etr1-1 transgenic plants due to dominant ethylene insensitivity.The delay in senescence observed in transgenic etr1-1 flowers was longer than in flowers pretreated with chemicals that inhibit either ethylene biosynthesis (amino-oxyacetic acid) or the ethylene response (silver thiosulfate). This may have important implications for post-harvest management of carnation flowers.  相似文献   

10.
11.
12.
Botrytis cinerea is a non-specific necrotrophic pathogen that attacks more than 200 plant species. In contrast to biotrophs, the necrotrophs obtain their nutrients by first killing the host cells. Many studies have shown that infection of plants by necrosis-causing pathogens induces a systemic acquired resistance (SAR), which provides protection against successive infections by a range of pathogenic organisms. We analyzed the role of SAR in B. cinerea infection of Arabidopsis. We show that although B. cinerea induced necrotic lesions and camalexin biosynthesis, it did not induce SAR-mediated protection against virulent strains of Pseudomonas syringae, or against subsequent B. cinerea infections. Induction of SAR with avirulent P. syringae or by chemical treatment with salicylic acid (SA) or benzothiadiazole also failed to inhibit B. cinerea growth, although removal of basal SA accumulation by expression of a bacterial salicylate hydroxylase (NahG) gene or by infiltration of 2-aminoindan-2-phosphonic acid, an inhibitor of phenylpropanoid pathway, increased B. cinerea disease symptoms. In addition, we show that B. cinerea induced expression of genes associated with SAR, general stress and ethylene/jasmonate-mediated defense pathways. Thus, B. cinerea does not induce SAR nor is it affected by SAR, making it a rare example of a necrogenic pathogen that does not cause SAR.  相似文献   

13.
Ethylene regulates the timing of leaf senescence in Arabidopsis   总被引:20,自引:7,他引:13  
The plant hormone ethylene influences many aspects of plant growth and development, including some specialized forms of programmed senescence such as fruit ripening and flower petal senescence. To study the relationship between ethylene and leaf senescence, etr1-1, an ethylene-insensitive mutant in Arabidopsis, was used. Comparative analysis of rosette leaf senescence between etr1-1 and wild-type plants revealed that etr1-1 leaves live approximately 30% longer than the wild-type leaves. Delayed leaf senescence in etr1-1 coincided with delayed induction of senescence-associated genes (SAGs) and higher expression levels of photosynthesis-associated genes (PAGs). In wild-type plants, exogenous ethylene was able to further accelerate induction of SAGs and decrease expression of PAGs. The extended period of leaf longevity in etr1-1 was associated with low levels of photosynthetic activity. Therefore, the leaves in etr1-1 functionally senesced even though the apparent life span of the leaf was prolonged.  相似文献   

14.
15.
16.
Here, we propose that organic hydroponics trigger induced systemic resistance (ISR) in lettuce against air-borne Botrytis cinerea, which causes gray mold. We compared effects of organic and chemical hydroponics, assessed presence of ISR elicitors in the hydroponic nutrient solution, and investigated molecular mechanism of ISR. Organic hydroponics significantly reduced gray mold lesions in lettuce (cultivated hydroponically) and cucumber (cultivated in soil and foliar sprayed with nutrient solution). The 1-aminocyclopropane-1-carboxylic acid synthase gene in lettuce and lipoxygenase and ethylene receptor-related gene in cucumber showed heightened expression, suggesting that the jasmonic acid/ethylene (JA/ET)-signaling pathway was involved in ISR for both crops. Low salicylic acid β-glucoside levels confirmed role of the ISR signaling pathway. ISR in both lettuce and cucumbers indicated that elicitors in organic hydroponics were nonhost-specific and that the JA/ET pathway was activated without microbe–root interaction. Thus, organic hydroponics can be an effective method for both soil-borne and air-borne disease control.  相似文献   

17.
18.
19.
Plants challenged by pathogens, especially necrotrophic fungi such as Botrytis cinerea, produce high levels of ethylene. At present, the signaling pathways underlying the induction of ethylene after pathogen infection are largely unknown. MPK6, an Arabidopsis stress‐responsive mitogen‐activated protein kinase (MAPK) was previously shown to regulate the stability of ACS2 and ACS6, two type I ACS isozymes (1‐amino‐cyclopropane‐1‐carboxylic acid synthase). Phosphorylation of ACS2 and ACS6 by MPK6 prevents rapid degradation of ACS2/ACS6 by the 26S proteasome pathway, resulting in an increase in cellular ACS activity and ethylene biosynthesis. Here, we show that MPK3, which shares high homology and common upstream MAPK kinases with MPK6, is also capable of phosphorylating ACS2 and ACS6. In the mpk3 mutant background, ethylene production in gain‐of‐function GVG‐NtMEK2DD transgenic plants was compromised, suggesting that MPK6 and MPK3 function together to stabilize ACS2 and ACS6. Using a liquid‐cultured seedling system, we found that B. cinerea‐induced ethylene biosynthesis was greatly compromised in mpk3/mpk6 double mutant seedlings. In contrast, ethylene production decreased only slightly in the mpk6 single mutant and not at all in the mpk3 single mutant, demonstrating overlapping roles for these two highly homologous MAPKs in pathogen‐induced ethylene induction. Consistent with the role of MPK3/MPK6 in the process, mutation of ACS2 and ACS6, two genes encoding downstream substrates of MPK3/MPK6, also reduced B. cinerea‐induced ethylene production. The residual levels of ethylene induction in the acs2/acs6 double mutant suggest the involvement of additional ACS isoforms, possibly regulated by MAPK‐independent pathway(s).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号