首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three days of fear conditioning that combines tactile stimulation of a row of facial vibrissae (conditioned stimulus, CS) with a tail shock (unconditioned stimulus, UCS) expands the representation of “trained” vibrissae, which can be demonstrated by labeling with 2-deoxyglucose in layer IV of the barrel cortex. We have also shown that functional reorganization of the primary somatosensory cortex (S1) increases GABAergic markers in the hollows of “trained” barrels of the adult mouse. This study investigated how whisker-shock conditioning (CS+UCS) affected the expression of puncta of a high-affinity GABA plasma membrane transporter GAT-1 in the barrel cortex of mice 24 h after associative learning paradigm. We found that whisker-shock conditioning (CS+UCS) led to increase expression of neuronal and astroglial GAT-1 puncta in the “trained” row compared to controls: Pseudoconditioned, CS-only, UCS-only and Naïve animals. These findings suggest that fear conditioning specifically induces activation of systems regulating cellular levels of the inhibitory neurotransmitter GABA.  相似文献   

2.
Gaba-ergic neurons are a diverse cell class with extensive influence over cortical processing, but their role in experience-dependent plasticity is not completely understood. Here we addressed the role of cortical somatostatin- (SOM-INs) and vasoactive intestinal polypeptide- (VIP-INs) containing interneurons in a Pavlovian conditioning where stimulation of the vibrissae is used as a conditioned stimulus and tail shock as unconditioned one. This procedure induces a plastic change observed as an enlargement of the cortical functional representation of vibrissae activated during conditioning. Using layer-targeted, cell-selective DREADD transductions, we examined the involvement of SOM-INs and VIP-INs activity in learning-related plastic changes. Under optical recordings, we injected DREADD-expressing vectors into layer IV (L4) barrels or layer II/III (L2/3) areas corresponding to the activated vibrissae. The activity of the interneurons was modulated during all conditioning sessions, and functional 2-deoxyglucose (2DG) maps were obtained 24 h after the last session.In mice with L4 but not L2/3 SOM-INs suppressed during conditioning, the plastic change of whisker representation was absent. The behavioral effect of conditioning was disturbed. Both L4 SOM-INs excitation and L2/3 VIP-INs inhibition during conditioning did not affect the plasticity or the conditioned response.We found the activity of L4 SOM-INs is indispensable in the formation of learning-induced plastic change. We propose that L4 SOM-INs may provide disinhibition by blocking L4 parvalbumin interneurons, allowing a flow of information into upper cortical layers during learning.  相似文献   

3.
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers.  相似文献   

4.
Gamma-aminobutyric acid (GABA) is an important neurotransmitter that, through the subtype A GABA receptor (GABAAR), induces inhibition in the adult brain. Here we show that an excitatory, rather than inhibitory, GABAergic system exists in airway epithelial cells. Both GABAARs and the GABA synthetic enzyme glutamic acid decarboxylase (GAD) are expressed in pulmonary epithelial cells. Activation of GABAARs depolarized these cells. The expression of GAD in the cytosol and GABAARs in the apical membranes of airway epithelial cells increased markedly when mice were sensitized and then challenged with ovalbumin, an approach for inducing allergic asthmatic reactions. Similarly, GAD and GABAARs in airway epithelial cells of humans with asthma increased after allergen inhalation challenge. Intranasal application of selective GABAAR inhibitors suppressed the hyperplasia of goblet cells and the overproduction of mucus induced by ovalbumin or interleukin-13 in mice. These findings show that a previously unknown epithelial GABAergic system has an essential role in asthma.  相似文献   

5.
The plastic changes in the auditory cortex induced by a fear conditioning, through pairing a sound (CS) with an electric foot-shock (US), were investigated using an optical recording method with voltage sensitive dye, RH795. In order to investigate the effects of association learning, optical signals in the auditory cortex in response to CS (12 kHz pure tone) and non-CS (4, 8, 16 kHz pure tone) were recorded before and after normal and sham conditioning. As a result, the response area to CS enlarged only in the conditioning group after the conditioning. Additionally, the rise time constant of the auditory response to CS significantly decreased and the relative peak value and the decay time constant of the auditory response to CS significantly increased after the conditioning. This study introduces an optical approach to the investigation of fear conditioning, representational plasticity, and the cholinergic system. The findings are synthesized in a model of the synaptic mechanisms that underlie cortical plasticity.  相似文献   

6.
Changes in conditioned impulse reactions of neurons in sensorimotor cortex were studied during microiontophoretic application of glutamatergic and GABA ergic agonistic and antagonistic drugs. It was shown that ionotropic glutamate receptors (AMPA and NMDA) are activated by a conditioned stimulus. Not only large pyramidal neurons of deep cortical layers but surrounding short-axon inhibitory interneurons are involved in the reaction. It was shown that the activity of pyramidal neurons is under a constant inhibitory control from surrounding interneurons. This inhibition is involved in organization of excitatory cortical responses during conditioning.  相似文献   

7.
8.
Gulledge AT  Stuart GJ 《Neuron》2003,37(2):299-309
Little is known about how GABAergic inputs interact with excitatory inputs under conditions that maintain physiological concentrations of intracellular anions. Using extracellular and gramicidin perforated-patch recording, we show that somatic and dendritic GABA responses in mature cortical pyramidal neurons are depolarizing from rest and can facilitate action potential generation when combined with proximal excitatory input. Dendritic GABA responses were excitatory regardless of timing, whereas somatic GABA responses were inhibitory when coincident with excitatory input but excitatory at earlier times. These excitatory actions of GABA occur even though the GABA reversal potential is below action potential threshold and largely uniform across the somato-dendritic axis, and arise when GABAergic inputs are temporally or spatially isolated from concurrent excitation. Our findings demonstrate that under certain circumstances GABA will have an excitatory role in synaptic integration in the cortex.  相似文献   

9.
The response properties of neurons of the postero-medial barrel sub-field of the somatosensory cortex (the cortical structure receiving information from the mystacial vibrissae can be modified as a consequence of peripheral manipulations of the afferent activity. This plasticity depends on the integrity of the cortical cholinergic innervation, which originates at the nucleus basalis magnocellularis (NBM). The activity of the NBM is related to the behavioral state of the animal and the putative cholinergic neurons are activated by specific events, such as reward-related signals, during behavioral learning. Experimental studies on acetylcholine (ACh)-dependent cortical plasticity have shown that ACh is needed for both the induction and the expression of plastic modifications induced by sensory-cholinergic pairings. Here we review and discuss ACh-dependent plasticity and activity-dependent plasticity and ask whether these two mechanisms are linked. To address this question, we analyzed our data and tested whether changes mediated by ACh were activity-dependent. We show that ACh-dependent potentiation of response in the barrel cortex of rats observed after sensory-cholinergic pairing was not correlated to the changes in activity induced during pairing. Since these results suggest that the effect of ACh during pairing is not exerted through a direct control of the post-synaptic activity, we propose that ACh might induce its effect either pre- or post-synaptically through activation of second messenger cascades.  相似文献   

10.
In experiments with noncurarized and unanaesthetized rabbits was recorded pyramidal tract response in the course of conditioning of direct stimulations of the two points of the cortical surface. The data obtained point to temporary specificity in manifestation of the membrane and synaptic plasticity, to participation of these mechanisms in the processes proceeding in both cortical representations of paired stimuli, and to predominantly undirected changes of a degree of their involvement in both cortical areas. At the early stage of conditioning were demonstrated all the characteristics of the dominant state developing at this stage, and at the late one those of differential conditioning. A conclusion is drown that the reinforcement through the membrane plasticity leads to initial dominant increase of cellular excitability. On the background of the latter by means of summation mechanism the conditions are created for excitation transmission from the sensory link of a new bond to its motor output. Underlined by the mechanisms of synaptic plasticity gradual reorganization of the excitatory and inhibitory connections to the output elements of conditioned response determines and consolidates specialized character of the elaborated reaction.  相似文献   

11.
Knott GW  Quairiaux C  Genoud C  Welker E 《Neuron》2002,34(2):265-273
During development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex.  相似文献   

12.
Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.  相似文献   

13.
The basal nucleus of the amygdala (BA) is involved in the formation of context-dependent conditioned fear and extinction memories. To understand the underlying neural mechanisms we developed a large-scale neuron network model of the BA, composed of excitatory and inhibitory leaky-integrate-and-fire neurons. Excitatory BA neurons received conditioned stimulus (CS)-related input from the adjacent lateral nucleus (LA) and contextual input from the hippocampus or medial prefrontal cortex (mPFC). We implemented a plasticity mechanism according to which CS and contextual synapses were potentiated if CS and contextual inputs temporally coincided on the afferents of the excitatory neurons. Our simulations revealed a differential recruitment of two distinct subpopulations of BA neurons during conditioning and extinction, mimicking the activation of experimentally observed cell populations. We propose that these two subgroups encode contextual specificity of fear and extinction memories, respectively. Mutual competition between them, mediated by feedback inhibition and driven by contextual inputs, regulates the activity in the central amygdala (CEA) thereby controlling amygdala output and fear behavior. The model makes multiple testable predictions that may advance our understanding of fear and extinction memories.  相似文献   

14.
B Ye  L Huang  Z Gao  P Chen  H Ni  S Guan  Y Zhu  JH Wang 《PloS one》2012,7(8):e41986

Background

Cross-modal plasticity is characterized as the hypersensitivity of remaining modalities after a sensory function is lost in rodents, which ensures their awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain unclear. We aim to study the role of different types of neurons in cross-modal plasticity.

Methodology/Principal Findings

In addition to behavioral tasks in mice, whole-cell recordings at the excitatory and inhibitory neurons, and their two-photon imaging, were conducted in piriform cortex. We produced a mouse model of cross-modal sensory plasticity that olfactory function was upregulated by trimming whiskers to deprive their sensory inputs. In the meantime of olfactory hypersensitivity, pyramidal neurons and excitatory synapses were functionally upregulated, as well as GABAergic cells and inhibitory synapses were downregulated in piriform cortex from the mice of cross-modal sensory plasticity, compared with controls. A crosswire connection between barrel cortex and piriform cortex was established in cross-modal plasticity.

Conclusion/Significance

An upregulation of pyramidal neurons and a downregulation of GABAergic neurons strengthen the activities of neuronal networks in piriform cortex, which may be responsible for olfactory hypersensitivity after a loss of whisker tactile input. This finding provides the clues for developing therapeutic strategies to promote sensory recovery and substitution.  相似文献   

15.
Plasticity was induced in the barrel cortex of adolescent rats by depriving every second vibrissa on the contralateral vibrissa pad.This produced a chessboard pattern of barrels in the cortex where each barrel receiving its principal input from a spared vibrissa was surrounded by barrels for which the principal vibrissa had been deprived and conversely, each barrel receiving its principal input from a deprived vibrissa was surrounded by barrels for which the principal vibrissa had been spared. After 7 days' deprivation, responses to the regrown vibrissae were depressed in layers II/III (49% of control levels) and IV (60%). Depression was far greater than that seen with "all vibrissa" deprivation, suggesting that activity in the spared vibrissae accentuated the depression of the deprived vibrissae. Depression was not due to subcortical changes as thalamic Ventral Posterior Medial (VPM) responses to deprived vibrissa were unchanged. The short latency responses in layer IV (5-7 ms) were unaffected by deprivation, but the number of cells responding at intermediate latencies (8-13 ms) was markedly reduced (to 66% of control). Potentiation of the spared vibrissa response was substantial in the near side of the neighbouring barrel (2.2-fold increase in layers II/III, 2.9-fold in layer IV) but had not spread to the far side after 7 days' deprivation. Sparing multiple vibrissae may increase the rate of potentiation since 7 days is insufficient time for potentiation in single vibrissa spared animals. Potentiation was not due to subcortical changes as thalamic VPm responses to the spared vibrissa were normal. However, in the spared barrel the response latency decreased by 1-2 ms. Only the cells responding at short latency exhibited potentiated responses (39% increase) suggesting that some thalamocortical plasticity is still possible at P28-35. These results show that chessboard pattern deprivation is capable of inducing substantial plasticity over a wide area of barrel cortex. All the major forms of plasticity seen with other vibrissa deprivation patterns were present, although no other single deprivation pattern studied so far causes the complete repertoire seen with chessboard deprivation.  相似文献   

16.
GABAA receptors are heteromeric, ligand-gated ion channels, built up with 19 different subunits. In the somatosensory cortex the most prevalent subunits are: alpha1, beta2 and gamma2. We showed that classical conditioning, in which stimulation of a row of vibrissae (CS) was paired with a tail shock (UCS), results in changes in cortical inhibitory system. Among others, GABAAalpha1 mRNA is up-regulated in layer IV of cortical representation of trained row of vibrissae. We examined the mRNA expression level of beta2 and gamma2 subunits of GABAAR. For in situ hybridization, 35S-labeled oligonucleotides were used as antisense probes. The effects were examined 1 h, 24 h and 5 days after the training lasting 3 days. There are no changes observed in beta2 subunits mRNA level. Expression of mRNA of gamma2 subunits increased 5 days after the training, but in contrast to other elements of gabaergic system we investigated, the change was observed in layers II/III. This indicates that learning-dependent regulation of GABAA receptor phenotype is specific for given neuronal subtype.  相似文献   

17.
Competitive interactions between left and right eye inputs to visual cortex during development are usually explained by the thalamocortical axons competing more or less well for cortical territory during retraction into eye specific domains. Here we review the evidence for competitive and co-operative interactions between cortical columns in barrel cortex which are present several weeks after retraction of thalamocortical axons into barrels. Sensory responses in barrel cortex can be altered by a period of vibrissa deprivation. It was found that responses to previously deprived vibrissae (that had been allowed to regrow) were depressed more if neighboring vibrissae were spared than if all vibrissae were removed simultaneously. Depression of the deprived vibrissa response was greater the closer the cell lay to a spared barrel. It was also found that spared vibrissae responses were potentiated more if several neighboring vibrissae were left intact than if only a single vibrissae was spared. These results suggest a mechanism of cooperative potentiation, perhaps due to intracortical summation of excitation evoked by neighbouring vibrissa stimulation. Thalamic responses to vibrissa stimulation were unaffected by deprivation indicating a cortical origin. One of the consequences of deprivation was that the speed of transmission between barrels was increased for spared and decreased for deprived vibrissa. These results imply that inherent interactions between cortical columns give rise to a property of competition and co-operativity which amplify the effects of sensory deprivation.  相似文献   

18.
Kawaguchi S  Hirano T 《Neuron》2000,27(2):339-347
At inhibitory synapses on a cerebellar Purkinje neuron, the depolarization caused by heterosynaptic climbing fiber activation induces long-lasting potentiation accompanied by an increase in GABA(A) receptor responsiveness. Here we show that activation of a presynaptic inhibitory interneuron during the conditioning postsynaptic depolarization suppresses the potentiation. The suppression is due to postsynaptic GABA(B) receptor activation by GABA released from presynaptic terminals. The results suggest that GABA(B) receptor activation decreases the activity of cAMP-dependent protein kinase through the G(i)/G(o) proteins. The presynaptic activity-dependent suppression of synaptic plasticity is a novel regulatory mechanism of synaptic efficacy at individual synapses and may contribute to the learning and computational ability of the cerebellar cortex.  相似文献   

19.
Monocular deprivation (MD) during development leads to a dramatic loss of responsiveness through the deprived eye in primary visual cortical neurons, and to degraded spatial vision (amblyopia) in all species tested so far, including rodents. Such loss of responsiveness is accompanied since the beginning by a decreased excitatory drive from the thalamo-cortical inputs. However, in the thalamorecipient layer 4, inhibitory interneurons are initially unaffected by MD and their synapses onto pyramidal cells potentiate. It remains controversial whether ocular dominance plasticity similarly or differentially affects the excitatory and inhibitory synaptic conductances driven by visual stimulation of the deprived eye and impinging onto visual cortical pyramids, after a saturating period of MD. To address this issue, we isolated visually-driven excitatory and inhibitory conductances by in vivo whole-cell recordings from layer 4 regular-spiking neurons in the primary visual cortex (V1) of juvenile rats. We found that a saturating period of MD comparably reduced visually–driven excitatory and inhibitory conductances driven by visual stimulation of the deprived eye. Also, the excitatory and inhibitory conductances underlying the synaptic responses driven by the ipsilateral, left open eye were similarly potentiated compared to controls. Multiunit recordings in layer 4 followed by spike sorting indicated that the suprathreshold loss of responsiveness and the MD-driven ocular preference shifts were similar for narrow spiking, putative inhibitory neurons and broad spiking, putative excitatory neurons. Thus, by the time the plastic response has reached a plateau, inhibitory circuits adjust to preserve the normal balance between excitation and inhibition in the cortical network of the main thalamorecipient layer.  相似文献   

20.
GABAA receptors are heteromeric, ligand‐gated ion channels, built up with 19 different subunits. In the somatosensory cortex the most prevalent subunits are: alpha1, beta2 and gamma2. We showed that classical conditioning, in which stimulation of a row of vibrissae (CS) was paired with a tail shock (UCS), results in changes in cortical inhibitory system. Among others, GABAAalpha1 mRNA is up‐regulated in layer IV of cortical representation of trained row of vibrissae. We examined the mRNA expression level of beta2 and gamma2 subunits of GABAAR. For in situ hybridization, 35S‐labeled oligonucleotides were used as antisense probes. The effects were examined 1 h, 24 h and 5 days after the training lasting 3 days. There are no changes observed in beta2 subunits mRNA level. Expression of mRNA of gamma2 subunits increased 5 days after the training, but in contrast to other elements of gabaergic system we investigated, the change was observed in layers II/III. This indicates that learning‐dependent regulation of GABAA receptor phenotype is specific for given neuronal subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号