首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Pluripotent stem cells, termed embryonic germ (EG) cells, have been generated from both human and mouse primordial germ cells (PGCs). Like embryonic stem (ES) cells, EG cells have the potential to differentiate into all germ layer derivatives and may also be important for any future clinical applications. The development of PGCs in vivo is accompanied by major epigenetic changes including DNA demethylation and imprint erasure. We have investigated the DNA methylation pattern of several imprinted genes and repetitive elements in mouse EG cell lines before and after differentiation. Analysed cell lines were derived soon after PGC specification, “early”, in comparison with EG cells derived after PGC colonisation of the genital ridge, “late” and embryonic stem (ES) cell lines, derived from the inner cell mass (ICM). Early EG cell lines showed strikingly heterogeneous DNA methylation patterns, in contrast to the uniformity of methylation pattern seen in somatic cells (control), late EG cell and ES cell lines. We also observed that all analysed XX cell lines exhibited less methylation than XY. We suggest that this heterogeneity may reflect the changes in DNA methylation taking place in the germ cell lineage soon after specification.  相似文献   

2.
3.
Avian pluripotent stem cells   总被引:11,自引:0,他引:11  
Pluripotent embryonic stem cells are undifferentiated cells capable of proliferation and self-renewal and have the capacity to differentiate into all somatic cell types and the germ line. They provide an in vitro model of early embryonic differentiation and are a useful means for targeted manipulation of the genome. Pluripotent stem cells in the chick have been derived from stage X blastoderms and 5.5 day gonadal primordial germ cells (PGCs). Blastoderm-derived embryonic stem cells (ESCs) have the capacity for in vitro differentiation into embryoid bodies and derivatives of the three primary germ layers. When grafted onto the chorioallantoic membrane, the ESCs formed a variety of differentiated cell types and attempted to organize into complex structures. In addition, when injected into the unincubated stage X blastoderm, the ESCs can be found in numerous somatic tissues and the germ line. The potential give rise to somatic and germ line chimeras is highly dependent upon the culture conditions and decreases with passage. Likewise, PGC-derived embryonic germ cells (EGCs) can give rise to simple embryoid bodies and can undergo some differentiation in vitro. Interestingly, chicken EG cells contribute to somatic lineages when injected into the stage X blastoderm, but only germ line chimeras have resulted from EGCs injected into the vasculature of the stage 16 embryo. To date, no lines of transgenic chickens have been generated using ESCs or EGCs. Nevertheless, progress towards the culture of avian pluripotent stem cells has been significant. In the future, the answers to fundamental questions regarding segregation of the avian germ line and the molecular basis of pluripotency should foster the full use of avian pluripotent stem cells.  相似文献   

4.
5.
6.
Formation of motile sperm in Drosophila melanogaster requires the coordination of processes such as stem cell division, mitotic and meiotic control and structural reorganization of a cell. Proper execution of spermatogenesis entails the differentiation of cells derived from two distinct embryonic lineages, the germ line and the somatic mesoderm. Through an analysis of homozygous viable and fertile enhancer detector lines, we have identified molecular markers for the different cell types present in testes. Some lines label germ cells or somatic cyst cells in a stage-specific manner during their differentiation program. These expression patterns reveal transient identities for the cyst cells that had not been previously recognized by morphological criteria. A marker line labels early stages of male but not female germ cell differentiation and proves useful in the analysis of germ line sex-determination. Other lines label the hub of somatic cells around which germ line stem cells are anchored. By analyzing the fate of the somatic hub in an agametic background, we show that the germ line plays some role in directing its size and its position in the testis. We also describe how marker lines enable us to identify presumptive cells in the embryonic gonadal mesoderm before they give rise to morphologically distinct cell types. Finally, this collection of marker lines will allow the characterization of genes expressed either in the germ line or in the soma during spermatogenesis.  相似文献   

7.
8.
Nuclear transfer embryonic stem cells (ntESCs) show stem cell characteristics such as pluripotency but cause no immunological disorders. Although ntESCs are able to differentiate into somatic cells, the ability of ntESCs to differentiate into primordial germ cells (PGCs) has not been examined. In this work, we examined the capacity of mouse ntESCs to differentiate into PGCs in vitro. ntESCs aggregated to form embryoid bodies (EB) in EB culture medium supplemented with bone morphogenetic protein 4(BMP4) as the differentiation factor. The expression level of specific PGC genes was compared at days 4 and 8 using real time PCR. Flow cytometry and immunocytochemical staining were used to detect Mvh as a specific PGC marker. ntESCs expressed particular genes related to different stages of PGC development. Flow cytometry and immunocytochemical staining confirmed the presence of Mvh protein in a small number of cells. There were significant differences between cells that differentiated into PGCs in the group treated with Bmp4 compared to non-treated cells. These findings indicate that ntESCs can differentiate into putative PGCs. Improvement of ntESC differentiation into PGCs may be a reliable means of producing mature germ cells.  相似文献   

9.
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells.  相似文献   

10.
Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.  相似文献   

11.
Pluripotent human stem cells isolated from early embryos represent a potentially unlimited source of many different cell types for cell-based gene and tissue therapies [1-3]. Nevertheless, if the full potential of cell lines derived from donor embryos is to be realised, the problem of donor-recipient tissue matching needs to be overcome. One approach, which avoids the problem of transplant rejection, would be to establish stem cell lines from the patient's own cells through therapeutic cloning [3,4]. Recent studies have shown that it is possible to transfer the nucleus from an adult somatic cell to an unfertilised oocyte that is devoid of maternal chromosomes, and achieve embryonic development under the control of the transferred nucleus [5-7]. Stem cells isolated from such a cloned embryo would be genetically identical to the patient and pose no risk of immune rejection. Here, we report the isolation of pluripotent murine stem cells from reprogrammed adult somatic cell nuclei. Embryos were generated by direct injection of mechanically isolated cumulus cell nuclei into mature oocytes. Embryonic stem (ES) cells isolated from cumulus-cell-derived blastocysts displayed the characteristic morphology and marker expression of conventional ES cells and underwent extensive differentiation into all three embryonic germ layers (endoderm, mesoderm and ectoderm) in tumours and in chimaeric foetuses and pups. The ES cells were also shown to differentiate readily into neurons and muscle in culture. This study shows that pluripotent stem cells can be derived from nuclei of terminally differentiated adult somatic cells and offers a model system for the development of therapies that rely on autologous, human pluripotent stem cells.  相似文献   

12.
《Developmental biology》1987,121(1):182-191
We investigated whether all stem cells of Hydra can differentiate both somatic cells and gametes or if a separate germ line exists in these phylogenetically old organisms. The differentiation potential of single stem cells was analyzed by applying a statistical cloning procedure. All stem cell clones were found to differentiate somatic cells. No clone was found to contain stem cells which do not differentiate. Most of the clones could be induced to form gametes. No clone was found that produced gametes only. The results indicate that stem cells are multipotent in the sense that individual stem cells can differentiate into somatic cells as well as germ line cells.  相似文献   

13.
14.
15.
Chen G  Ye Z  Yu X  Zou J  Mali P  Brodsky RA  Cheng L 《Cell Stem Cell》2008,2(4):345-355
Pluripotent human embryonic stem (hES) cells can differentiate into various cell types derived from the three embryonic germ layers and extraembryonic tissues such as trophoblasts. The mechanisms governing lineage choices of hES cells are largely unknown. Here, we report that we established two independent hES cell clones lacking a group of cell surface molecules, glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs). The GPI-AP deficiency in these two hES clones is due to the deficiency in the gene expression of PIG-A (phosphatidyl-inositol-glycan class A), which is required for the first step of GPI synthesis. GPI-AP-deficient hES cells were capable of forming embryoid bodies and initiating cell differentiation into the three embryonic germ layers. However, GPI-AP-deficient hES cells failed to form trophoblasts after differentiation induction by embryoid body formation or by adding exogenous BMP4. The defect in trophoblast formation was due to the lack of GPI-anchored BMP coreceptors, resulting in the impairment of full BMP4 signaling activation in the GPI-AP-deficient hES cells. These data reveal that GPI-AP-enhanced full activation of BMP signaling is required for human trophoblast formation.  相似文献   

16.
17.
18.
19.
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20–30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.  相似文献   

20.
The unique differentiation potential of inner cell mass derived embryonic stem cells together with their outstanding self-renewal capacity makes them a desirable source for somatic cell therapy of human diseases. Somatic cells are gained by in vitro differentiation of embryonic stem cells, however, the differentiation potential of embryonic stem cells varied even between isogenic cell lines. Variable differentiation potentials may either be a consequence of an inherent inhomogeneity of gene expression in the inner cell mass or may have technical reasons. To understand variations in the differentiation potential, we generated pairs of isogenic, monozygotic twin, and single inner cell mass derived clonal embryonic stem cell lines, and demonstrate that they differentially express the leukaemia inhibitory factor receptor gene. Variations of leukaemia inhibitory factor receptor protein levels are already evident in the inner cell mass and predispose the cardiomyogenic potential of embryonic stem cell lines in a Janus activated kinase dependent manner. Thus, a single inner cell mass may give rise to embryonic stem cell lines with different developmental potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号