首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Bone morphogenetic proteins (BMPs) play pivotal roles in bone and cartilage growth and repair. Through phenotypes of short-ear (se) mice, which have BMP-5 mutations, a role for BMP-5 in some specific aspects of skeletogenesis and cartilage growth is known. This report examines BMP-5 expression in the growth plate and in differentiating cultures of primary chondrocytes, and the effects of addition of BMP-5 or its inhibition by anti-BMP-5 antibody in chondrocyte cultures. By laser capture microdissection and immunohistochemistry, we found that BMP-5 is expressed in proliferating zone (PZ) chondrocytes and that the expression increases sharply with hypertrophic differentiation. A similar pattern was observed in differentiating cultures of primary chondrocytes, with BMP-5 expression increasing as cells differentiated, in contrast to other BMPs. BMP-5 added to cultures increased cell proliferation early in the culture period and also stimulated cartilage matrix synthesis. Also, BMP-5 addition to the cultures activated phosphorylation of Smad 1/5/8 and p38 MAP kinase and caused increased nuclear accumulation of phospho-Smads. Anti-BMP-5 antibody inhibited the endogenous BMP-5, reducing cell proliferation and phospho-Smad nuclear accumulation. Together, the results demonstrate that BMP-5 is normally an important regulator of chondrocyte proliferation and differentiation. Whether other BMPs may compensate in BMP-5 loss-of-function mutations is discussed.  相似文献   

7.
8.
9.
Mechanical forces influence articular cartilage structure by regulating chondrocyte activity. Mechanical stimulation results in activation of an alpha5beta1 integrin dependent intracellular signal cascade involving focal adhesion kinase and protein kinase C, triggering the release of interleukin-4 from the cell. In normal HAC the response to physiological mechanical stimulation is characterised by increased levels of aggrecan mRNA and a decrease in levels of mRNA for matrix metalloproteinase 3 (MMP-3), the net result of which would be to maintain and optimise cartilage structure and function. This protective/anabolic response is not seen when chondrocytes from osteoarthritic cartilage are subjected to an identical mechanical stimulation regime. Following the observation that the neurotransmitter substance P is involved in chondrocyte mechanotransduction the present study was undertaken to establish potential roles for glutamate receptors in the control of chondrocyte mechanical responses. Using immunohistochemistry and RTPCR normal and OA chondrocytes are shown to express NR1 and NR2a subunits of the NMDA receptor. Addition of NMDA receptor agonists to chondrocytes in primary culture resulted in changes in membrane potential consistent with expression of functional receptors. NMDA receptor antagonists inhibited the hyperpolarisation response of normal chondrocytes to mechanical stimulation but had no effect on the depolarisation response of osteoarthritic chondrocytes to mechanical stimulation. These studies indicate that at least one subset of the NMDA receptor family of molecules is expressed in cartilage and may have important modulatory effects on mechanotransduction and cellular responses following mechanical stimulation. Indeed the results suggest that there is an alteration of NMDA receptor signalling in OA chondrocytes, which may be critical in the abnormal response of OA chondrocytes to mechanical stimulation. Thus NMDA receptors appear to be involved in the regulation of human articular chondrocyte responses to mechanical stimulation, and in OA, mechanotransduction pathways may be modified as a result of altered activation and function of these receptors.  相似文献   

10.
Bone morphogenetic proteins (BMPs) are cytokines from the TGF-β superfamily, with important roles during embryonic development and in the induction of bone and cartilage tissue differentiation in the adult body. In this contribution, we report the expression of recombinant human BMP-4, BMP-9, BMP-10, BMP-11 (or growth differentiation factor-11, GDF-11) and BMP-14 (GDF-5), using Escherichia coli pET-25b vector. BMPs were overexpressed, purified by affinity his-tag chromatography and shown to induce the expression of early markers of bone differentiation (e.g. smad-1, smad-5, runx2/cbfa1, dlx5, osterix, osteopontin, bone sialoprotein and alkaline phosphatase) in C2C12 cells and in human adipose stem cells. The described approach is a promising method for producing large amounts of different recombinant BMPs that show potential for novel biomedical applications.  相似文献   

11.
12.
13.
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3′-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3′UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号