首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Primary Sj?gren's syndrome (pSS) is an autoimmune disease that targets salivary and lachrymal glands, characterized by anti-cholinergic autoantibodies directed against the M(3) muscarinic acetylcholine receptor (mAChR). The aim of this work was to evaluate if cholinergic autoantibodies contained in IgG purified from Sj?gren sera could trigger apoptosis of A253 cell line. We also determined if caspase-3 and matrix metalloproteinase-3 (MMP-3) are involved in the induction of A253 cell death. Our results demonstrated that anti-cholinergic autoantibodies stimulate apoptosis and inositol phosphate (InsP) accumulation accompanied by caspase-3 activation and MMP-3 production. All of these effects were blunted by atropine and J104794, indicating that M(3) mAChRs are impacted by the anti-cholinergic autoantibodies. The intracellular pathway leading to autoantibody-induced biological effects involves phospholipase C (PLC), calcium/calmodulin (CaM) and extracellular calcium as demonstrated by treatment with U-73122, W-7, verapamil, BAPTA and BAPTA-AM, all of which blocked the effects of the anti-cholinergic autoantibodies. In conclusion, anti-cholinergic autoantibodies in IgG purified from pSS patient's sera mediates apoptosis of the A253 cell line in an InsP, caspase-3 and MMP-3 dependent manner.  相似文献   

3.
In this review we report recent findings on the physiological role of the five known muscarinic acetylcholine receptors (mAChRs) as shown by gene targeting technology. Using knockout mice for each mAChRs subtype, the role of mAChRs subtypes in a number of physiological functions was confirmed and new activities were discovered. The M1 mAChRs modulate neurotransmitter signaling in cortex and hippocampus. The M3 mAChRs are involved in exocrine gland secretion, smooth muscle contractility, pupil dilation, food intake, and weight gain. The role of the M5 mAChRs involves modulation of central dopamine function and the tone of cerebral blood vessels. mAChRs of the M2 subtype mediate muscarinic agonist-induced bradycardia, tremor, hypothermia, and autoinhibition of release in several brain regions. M4 mAChRs modulate dopamine activity in motor tracts and act as inhibitory autoreceptors in striatum. Thus, as elucidated by gene targeting technology, mAChRs have widespread and manifold functions in the periphery and brain.  相似文献   

4.
5.
Summary Studies with the atypical muscarinic antagonist pirenzepine provide convincing evidence for the classification of muscarinic acetylcholine receptors (mAChRs) into two subtypes, M1 and M2. The present study examines the heterogeneity of the M2 subtype employing the newly developed competitive muscarinic antagonist, AFDX-116. Comparison of the binding affinities of pirenzepine, atropine, and AFDX-116 to mAChRs in microsomes from the rabbit cerebral cortex, heart, and iris smooth muscle shows that iris mAChRs, which are pharmacologically of the M2 subtype, can be distinguished from M2 cardiac receptors based on their affinity for AFDX-116. These results are consistent with the hypothesis that the M2 receptor subtype consists of a heterogeneous population of receptors.Abbreviations mAChRs Muscarinic Acetylcholine Receptors - CCh Carbachol - NMS N-Methylscopolamine - AFDX-116 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6Hpyrido[2,3-b][1,4]benzodiazepine-6-one  相似文献   

6.
We designed and synthesized novel N-substituted 7-azaindoline derivatives as selective M1 and M4 muscarinic acetylcholine receptors (mAChRs) agonists. Hybridization of compound 2 with the HTS hit compound 5 followed by optimization of the N-substituents of 7-azaindoline led to identification of compound 1, which showed highly selective M1 and M4 mAChRs agonistic activity, weak human ether-a-go-go related gene inhibition, and good bioavailability in multiple animal species.  相似文献   

7.
8.
High doses of the muscarinic cholinergic agonist pilocarpine are a useful model for investigation of the essential mechanisms for seizure generation and spread in rodents. Pilocarpine (400 mg/kg; subcutaneously) was administered in 2-month-old female rats, and the content of striatum monoamines and (M(1)+M(2)) muscarinic and D(2) dopaminergic receptors was measured in the acute period. All treated animals showed peripheral cholinergic signs, stereotyped and clonic movements, tremors, seizures and the percentage mortality was approximately 63%. High performance liquid chromatography determinations, performed 24 h later, showed a decrease of striatal levels of dopamine, dihydroxyphenylacetic acid, 4-hydroxy-3-methoxy-phenylacetic acid and 5-hydroxytryptamine. Pilocarpine treatment induced downregulation of (M(1)+M(2)) muscarinic receptors and reduced the dissociation constants of (M(1)+M(2)) muscarinic and D(2) dopaminergic receptors, suggesting that these systems exert opposite effects on the regulation of convulsive activity. These and other important neurochemical changes found in the course of establishment of an epileptic focus can be observed after status epilepticus induced by pilocarpine.  相似文献   

9.
BackgroundRecently, it was demonstrated that G-protein-coupled receptors (GPCRs) can transactivate tyrosine kinase receptors in absence of their ligands. In this work, driven by the observation that mAChRs and fibroblast growth factor receptors (FGFRs) share signalling pathways and regulation of brain functions, it was decided to explore whether mAChRs activation may transactivate FGFRs and, if so, to characterize the related trophic effects in cultured hippocampal neurons.MethodsOxotremorine-M transactivation of FGFRs and related trophic effects were tested in primary hippocampal neurons. Western blotting and in situ proximity ligation assay (PLA) were used to detect FGFR phosphorylation (pFGFR) levels and M1R-FGFR1 heteroreceptor complexes, respectively.ResultsOxotremorine-M, a non-selective mAChRs agonist, was able to transactivate FGFR and this transactivation was blocked by Src inhibitors. Oxotremorine-M treatment produced a significant increase in the primary neurite outgrowth that was blocked by pre-treatment with the pFGFR inhibitor SU5402 and Src inhibitors. This trophic effect was almost similar to that induced by fibroblast growth factor-2 (FGF-2). By using atropine as nonselective mAChRs or pirenzepine as selective antagonist for M1 receptor (M1R) we could show that mAChRs are involved in modulating the pFGFRs. Using PLA, M1R-FGFR1 heteroreceptor complexes were identified in the hippocampus and cerebral cortex.ConclusionThe current findings, by showing functional mAChR-FGFR interactions, will contribute to advance the understanding of the mechanisms involved in the actions of cholinergic drugs on neuronal plasticity.General significantData may help to develop novel therapeutic strategies not only for neurodegenerative diseases but also for depression-induced atrophy of hippocampal neurons.  相似文献   

10.
Novel quinuclidinyl N-phenylcarbamate analogs were synthesized, and binding affinities at M1-M5 muscarinic acetylcholine receptor (mAChR) subtypes were determined using Chinese hamster ovary (CHO) cell membranes stably expressing one specific subtype of human mAChR. Although not subtype selective, the lead analog (±)-quinuclidin-3-yl-(4-fluorophenethyl)(phenyl)carbamate (3c) exhibited the highest affinity (Ki?=?2.0, 13, 2.6, 2.2, 1.8?nM) at each of the M1-M5 mAChRs, respectively. Based on results from the [3H]dopamine release assay using rat striatal slices, 3c acted as an agonist at mAChRs. The effect of 3c was inhibited by the nonselective mAChR antagonist, scopolamine, and 3c augmented release evoked by oxotremorine. A potent analog from the same scaffold, (±)-quinuclidin-3-yl-(4-methoxyphenethyl)(phenyl)-carbamate (3b) exhibited the greatest selectivity (17-fold) at M3 over M2 mAChRs. These analogs could serve as leads for further discovery of novel subtype-selective muscarinic ligands with the goal of providing therapeutics for substance use disorders and chronic obstructive pulmonary disease.  相似文献   

11.
The role of muscarinic acetylcholine receptors (mAChRs) in regulating glucose uptake in L6 skeletal muscle cells was investigated. [3H]-2-Deoxyglucose uptake was increased in differentiated L6 cells by insulin, acetylcholine, oxotremorine-M and carbachol. mAChR-mediated glucose uptake was inhibited by the AMPK inhibitor Compound C. Whole cell radioligand binding using [3H]-N-methyl scopolamine chloride identified mAChRs in differentiated but not undifferentiated L6 cells and M3 mAChR mRNA was detected only in differentiated cells. M3 mAChRs are Gq-coupled, and cholinergic stimulation by the mAChR agonists acetylcholine, oxotremorine-M and carbachol increased Ca2+ in differentiated but not undifferentiated L6 cells. This was due to muscarinic but not nicotinic activation as responses were antagonised by the muscarinic antagonist atropine but not the nicotinic antagonist tubocurarine. Western blotting showed that both carbachol and the AMPK activator AICAR increased phosphorylation of the AMPKα subunit at Thr172, with responses to carbachol blocked by Compound C and the CaMKK inhibitor STO609 but not by the PI3K inhibitor wortmannin. AICAR-stimulated AMPK phosphorylation was not sensitive to STO-609, confirming that this compound inhibits CaMKK but not the classical AMPK kinase LKB1. The TAK1 inhibitor (5Z)-7-oxozeaenol and the Gi inhibitor pertussis toxin both failed to block AMPK phosphorylation in response to carbachol. Using CHO-K1 cells stably expressing each of the mAChR subtypes (M1–M4), it was determined that only the M1 and M3 mAChRs phosphorylate AMPK, confirming a Gq-dependent mechanism. This study demonstrates that activation of M3 mAChRs in L6 skeletal muscle cells stimulates glucose uptake via a CaMKK–AMPK-dependent mechanism, independent of the insulin-stimulated pathway.  相似文献   

12.
Mitochondria play a central role in the integration and execution of a wide variety of apoptotic signals. In the present study, we examined the deleterious effects of burn injury on heart tissue. We explored the effects of vagal nerve stimulation (VNS) on cardiac injury in a murine burn injury model, with a focus on the protective effect of VNS on mitochondrial dysfunction in heart tissue. Mice were subjected to a 30% total body surface area, full‐thickness steam burn followed by right cervical VNS for 10 min. and compared to burn alone. A separate group of mice were treated with the M3‐muscarinic acetylcholine receptor (M3‐AchR) antagonist 4‐DAMP or phosphatidylinositol 3 Kinase (PI3K) inhibitor LY294002 prior to burn and VNS. Heart tissue samples were collected at 6 and 24 hrs after injury to measure changes in apoptotic signalling pathways. Burn injury caused significant cardiac pathological changes, cardiomyocyte apoptosis, mitochondrial swelling and decrease in myocardial ATP content at 6 and 24 hrs after injury. These changes were significantly attenuated by VNS. VNS inhibited release of pro‐apoptotic protein cytochrome C and apoptosis‐inducing factor from mitochondria to cytosol by increasing the expression of Bcl‐2, and the phosphorylation level of Bad (pBad136) and Akt (pAkt308). These protective changes were blocked by 4‐DAMP or LY294002. We demonstrated that VNS protected against burn injury–induced cardiac injury by attenuating mitochondria dysfunction, likely through the M3‐AchR and the PI3K/Akt signalling pathways.  相似文献   

13.
The M3 muscarinic acetylcholine receptor (mAChR) is a member of the family of mAChRs, which are associated with a variety of physiological functions including the contraction of various smooth muscle tissues, stimulation of glandular secretion, and regulation of a range of cholinergic processes in the central nerve system. We report here the discovery and a comprehensive structure­-activity relationships (SARs) study of novel positive allosteric modulators (PAMs) of the M3 mAChR through a high throughput screening (HTS) campaign. Compound 9 exhibited potent in vitro PAM activity towards the M3 mAChR and significant enhancement of muscle contraction in a concentration-dependent manner when applied to isolated smooth muscle strips of rat bladder. Compound 9 also showed excellent subtype selectivity over other subtypes of mAChRs including M1, M2, and M4 mAChRs, and moderate selectivity over the M5 mAChR, indicating that compound 9 is an M3-preferring M3/M5 dual PAM. Moreover, compound 9 displayed acceptable pharmacokinetics profiles after oral dosing to rats. These results suggest that compound 9 may be a promising chemical probe for the M3 mAChR for further investigation of its pharmacological function both in vitro and in vivo.  相似文献   

14.
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.  相似文献   

15.
16.
We have already demonstrated the presence of antibodies in the sera of chagasic patients with the ability to interact with neurotransmitter receptors triggering several intracellular pathways of transduction signals. Here we show that, chagasic IgG induced protein kinase C (PKC) translocation to rat cardiac membranes and this effect was inhibited by muscarinic cholinergic blockers atropine and AF-DX 116 pointing to the participation of M2 receptors in this effect. It was also able to stimulate nitric oxide synthase (NOS) activity and this action was blunted by phospholipase C (PLC) and PKC inhibitors indicating that the production of nitric oxide (NO) would be the consequence of the cascade of enzymatic pathways triggered by mAChR activation. PKC and NOS activities were involved in chagasic IgG negative inotropic actions on rat isolated myocardium as its effects were blunted by staurosporine and L-N-monomethyl arginine. Furthermore, low concentrations of chagasic IgG inhibited the cardiac mechanical action of carbachol in a non-competitive manner. These data suggested that PKC activation in myocardium by chagasic IgG would be involved in its physiological actions by modulating NOS activity. The participation of PKC-mediated phosphorylation of mAChR leading to receptor desensitization as one of the causes of dysautonomia is also discussed.  相似文献   

17.
Abstract: The feasibility of using a permeabilized preparation of human SH-SY-5Y neuroblastoma cells for studies of muscarinic acetylcholine receptor (mAChR) sequestration has been evaluated. Exposure of cells permeabilized with digitonin, streptolysin-O, or the α-toxin from Staphylococcus aureus to oxotremorine-M (Oxo-M) for 30 min resulted in a 25–30% reduction in the number of cell surface mAChRs, as monitored by the loss of N[3H]methyl- scopolamine ([3H]NMS) binding sites. The corresponding value for intact cells was 40%. For cells permeabilized with 20 μM digitonin, the Oxo-M-mediated reduction in [3H]NMS binding was time (t1/2~ 5 min) and concentration (EC50~ 10 μM) dependent and was agonist specific (Oxo M > bethanechol = arecoline = pilocarpine). In contrast, no reduction in total mAChR number, as monitored by the binding of [3H]quinuclidinyl benzilate, occurred following Oxo-M treatment. The loss of [3H]NMS sites observed in the presence of Oxo-M was unaffected by omission of either ATP or Ca2+, both of which are required for stimulated phosphoinositide hydrolysis, but could be inhibited by the inclusion of guanosine 5′-O-(2-thiodiphosphate). mAChRs sequestered in response to Oxo-M addition were unmasked when the cells were permeabilized in the presence of higher concentrations of digitonin (80 μM). The results indicate (a) that permeabilized SH-SY-5Y cells support an agonist-induced sequestration of mAChRs, the magnitude of which is ~ 65–70% of that observed for intact cells, (b) that when internalized, mAChRs are located in a cellular compartment to which [3H]NMS has only a limited access despite the removal of the plasma membrane barrier, and (c) that the production of phosphoinositide-derived second messengers is not a prerequisite for mAChR sequestration.  相似文献   

18.
Pilocarpine has been used to lower intraocular pressure (IOP) in glaucoma patients for more than 100 years. Since the identification of five muscarinic receptor subtypes, there has been an interest in separating the IOP-lowering effects from the ocular side effects of pupil constriction and lens accommodation. However, all these actions seem to be mediated by the M3 receptor. A novel muscarinic receptor agonist, AGN 199170, that has no activity on the M3 subtype was compared to pilocarpine in a monkey glaucoma model. This compound lowered IOP suggesting that muscarinic agonists targeted at muscarinic receptors other than the M3 subtype may be able to selectively lower IOP.  相似文献   

19.
We have investigated whether prejunctional inhibitory muscarinic receptors ("autoreceptors") exist on cholinergic nerves in human airways in vitro and whether guinea pig trachea provides a good model for further pharmacological characterization of these receptors. Pilocarpine was used as a selective agonist and gallamine as a selective antagonist of these autoreceptors. Acetylcholine (ACh) release from postganglionic cholinergic nerves was elicited by electrical field stimulation (EFS) (40 V, 0.5 ms, 32 Hz). In human bronchi, pilocarpine inhibited the contractile response to EFS in a dose-related fashion; the dose inhibiting 50% of the control contraction was 2.2 +/- 0.4 x 10(-7) (SE) M (n = 22), and the inhibition was 96% at 3 x 10(-5) M. The inhibitory effects of pilocarpine were antagonized by gallamine in a dose-related fashion. The results were qualitatively the same in the guinea pig. Gallamine significantly enhanced the contractile response to EFS in the guinea pig, whereas pirenzepine failed to do so, which suggests that M2-receptors are involved. We conclude that prejunctional muscarinic receptors that inhibit ACh release are present on cholinergic nerves in human airways and that guinea pig trachea is a good model for further pharmacological characterization of these receptors, which appear to belong to the M2-subtype.  相似文献   

20.
Giessel AJ  Sabatini BL 《Neuron》2010,68(5):936-947
Acetylcholine release and activation of muscarinic cholinergic receptors (mAChRs) enhance synaptic plasticity in?vitro and cognition and memory in?vivo. Within the hippocampus, mAChRs promote NMDA-type glutamate receptor-dependent forms of long-term potentiation. Here, we use calcium (Ca) imaging combined with two-photon laser glutamate uncaging at apical spines of CA1 pyramidal neurons to examine postsynaptic mechanisms of muscarinic modulation of glutamatergic transmission. Uncaging-evoked excitatory postsynaptic potentials and Ca transients are increased by muscarinic stimulation; however, this is not due to direct modulation of glutamate receptors. Instead, mAChRs modulate a negative feedback loop in spines that normally suppresses synaptic signals. mAChR activation reduces the Ca sensitivity of small conductance Ca-activated potassium (SK) channels that are found in the spine, resulting in increased synaptic potentials and Ca transients. These effects are mediated by M1-type muscarinic receptors and occur in a casein kinase-2-dependent manner. Thus, muscarinic modulation regulates synaptic transmission by tuning the activity of nonglutamatergic postsynaptic ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号