首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.  相似文献   

2.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

3.
4.
Activin-betaA signaling is required for zebrafish fin regeneration   总被引:1,自引:0,他引:1  
  相似文献   

5.
Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b . We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl ( Ambystoma mexicanum ), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.  相似文献   

6.
In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.  相似文献   

7.

Background

The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration.

Methodology/Principal Findings

We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation.

Conclusions/Significance

We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.  相似文献   

8.
Morphogenesis is a fascinating but complex and incompletely understood developmental process. The sensory lateral line system consists of only a few hundred cells and is experimentally accessible making it an excellent model system to interrogate the cellular and molecular mechanisms underlying segmental morphogenesis. The posterior lateral line primordium periodically deposits prosensory organs as it migrates to the tail tip. We demonstrate that periodic proneuromast deposition is governed by a fundamentally different developmental mechanism than the classical models of developmental periodicity represented by vertebrate somitogenesis and early Drosophila development. Our analysis demonstrates that proneuromast deposition is driven by periodic lengthening of the primordium and a stable Wnt/β-catenin activation domain in the leading region of the primordium. The periodic lengthening of the primordium is controlled by Wnt/β-catenin/Fgf-dependent proliferation. Once proneuromasts are displaced into the trailing Wnt/β-catenin-free zone they are deposited. We have previously shown that Wnt/β-catenin signaling induces Fgf signaling and that interactions between these two pathways regulate primordium migration and prosensory organ formation. Therefore, by coordinating migration, prosensory organ formation and proliferation, localized activation of Wnt/β-catenin signaling in the leading zone of the primordium plays a crucial role in orchestrating lateral line morphogenesis.  相似文献   

9.
The creation of molecular tools able to unravel in vivo spatiotemporal activation of specific cell signaling events during cell migration, differentiation and morphogenesis is of great relevance to developmental cell biology. Here, we describe the generation, validation and applications of two transgenic reporter lines for Wnt/β-catenin signaling, named TCFsiam, and show that they are reliable and sensitive Wnt biosensors for in vivo studies. We demonstrate that these lines sensitively detect Wnt/β-catenin pathway activity in several cellular contexts, from sensory organs to cardiac valve patterning. We provide evidence that Wnt/β-catenin activity is involved in the formation and maintenance of the zebrafish CNS blood vessel network, on which sox10 neural crest-derived cells migrate and proliferate. We finally show that these transgenic lines allow for screening of Wnt signaling modifying compounds, tissue regeneration assessment as well as evaluation of potential Wnt/β-catenin genetic modulators.  相似文献   

10.
Wnt/β-catenin signaling has a great and diverse influence on the formation, development, and vital activity of a great number of vertebrate tissues, including heart tissue. The role of Wnt/β-catenin signaling and β-catenin itself in the processes of cardiogenesis and adult myocardium functioning is not fully elucidated to date. The current review regards the attempt to generalize contemporary literature data on participation of this signaling pathway in embryogenesis and postnatal heart development, as well as in adult myocardium functioning in normal conditions and during stress adaptation, and aging, resulting in hypertrophy and heart remodeling. Based on the experimental articles and reviews, we can assume that Wnt/β-catenin signaling pathway is involved not only in controlling the cardiogenesis but also in processes of adaptation and remodeling of the adult organ. This control can be characterized as complicated and multistep and β-catenin appears to be a prospective candidate as a target for development of new approaches to adult myocardium pathologies therapy.  相似文献   

11.
12.
Digit and interdigit (D/ID) development is one of the important research fields in molecular developmental biology. Interdigital cell death (ICD) is a morphogenetic event which has been considered as an essential process for D/ID formation. Although some growth factors including Bmp and Fgf signaling can modulate ICD, growth factor crosstalk regulating ICD is poorly understood. Wnt canonical pathway and Bmp signal crosstalk has been considered as the essential growth factor crosstalk in organogenesis. To elucidate the crosstalk to regulate the D/ID formation, we analyzed conditional mutant mice with limb bud ectoderm expressing constitutively activated β-catenin signaling. We showed that modulation of Wnt/β-catenin signal in the limb ectoderm including the AER regulates ID apoptosis. We also demonstrated that Wnt/β-catenin signaling in the ectoderm can positively regulate Fgf8 possibly antagonizing the epithelial derived Bmp signaling. Human birth defects for digit abnormalities have been known to be affected by multiple parameters. Elucidation of the potential mechanisms underlying such D/ID development is an urgent medical issue to be solved. This work would be one of the first studies showing essential growth factor cascades in the D/ID formation.  相似文献   

13.
14.
Planarians have high regenerative ability, which is dependent on pluripotent adult somatic stem cells called neoblasts. Recently, canonical Wnt/β-catenin signaling was shown to be required for posterior specification, and Hedgehog signaling was shown to control anterior-posterior polarity via activation of the Djwnt1/P-1 gene at the posterior end of planarians. Thus, various signaling molecules play an important role in planarian stem cell regulation. However, the molecular mechanisms directly involved in stem cell differentiation have remained unclear. Here, we demonstrate that one of the planarian LIM-homeobox genes, Djislet, is required for the differentiation of Djwnt1/P-1-expressing cells from stem cells at the posterior end. RNA interference (RNAi)-treated planarians of Djislet [Djislet(RNAi)] show a tail-less phenotype. Thus, we speculated that Djislet might be involved in activation of the Wnt signaling pathway in the posterior blastema. When we carefully examined the expression pattern of Djwnt1/P-1 by quantitative real-time PCR during posterior regeneration, we found two phases of Djwnt1/P-1 expression: the first phase was detected in the differentiated cells in the old tissue in the early stage of regeneration and then a second phase was observed in the cells derived from stem cells in the posterior blastema. Interestingly, Djislet is expressed in stem cell-derived DjPiwiA- and Djwnt1/P-1-expressing cells, and Djislet(RNAi) only perturbed the second phase. Thus, we propose that Djislet might act to trigger the differentiation of cells expressing Djwnt1/P-1 from stem cells.  相似文献   

15.
Medaka is an attractive model to study epimorphic regeneration. The fins have remarkable regenerative capacity and are replaced about 14 days after amputation. The formation of blastema, a mass of undifferentiated cells, is essential for regeneration; however, the molecular mechanisms are incompletely defined. To identify the genes required for fin regeneration, especially for blastema formation, we constructed cDNA libraries from fin regenerates at 3 days postamputation and 10 days postamputation. A total of 16,866 expression sequence tags (ESTs) were sequenced and subjected to BLASTX analysis. The result revealed that about 60% of them showed strong matches to previously identified proteins, and major signaling molecules related to development, including FGF, BMP, Wnt, Notch/Delta, and Ephrin/Eph signaling pathways were isolated. To identify novel genes that showed specific expression during fin regeneration, cDNA microarray was generated based on 2900 independent ESTs from each library which had no sequence similarity to known proteins. We obtained 6 candidate genes associated with blastema formation by gene expression pattern screening in competitive hybridization analyses and in situ hybridization. Olrfe16d23 and olrfe14k04 were expressed only in early regenerating stages when blastema formation was induced. The expression of olrf5n23, which encodes a novel signal peptide, was detected in wound epidermis throughout regeneration. Olrfe23l22, olrfe20n22, and olrfe24i02 were expressed notably in the blastema region. Our study has thus identified the gene expression profiles and some novel candidate genes to facilitate elucidation of the molecular mechanisms of fin regeneration.  相似文献   

16.
The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/β-catenin pathway, which is vital for induction and patterning of the early vertebrate brain. However, its role in later brain development is less clear. Here, we examined the mechanisms underlying effects of an Apc1 zygotic-effect mutation on late brain development in zebrafish. Apc1 is required for maintenance of established brain subdivisions and control of local organizers such as the isthmic organizer (IsO). Caudal expansion of Fgf8 from IsO into the cerebellum is accompanied by hyperproliferation and abnormal cerebellar morphogenesis. Loss of apc1 results in reduced proliferation and apoptosis in the dorsal midbrain. Mosaic analysis shows that Apc is required cell-autonomously for maintenance of dorsal midbrain cell fate. The tectal phenotype occurs independently of Fgf8-mediated IsO function and is predominantly caused by stabilization of β-catenin and subsequent hyperactivation of Wnt/β-catenin signalling, which is mainly mediated through LEF1 activity. Chemical activation of the Wnt/β-catenin in wild-type embryos during late brain maintenance stages phenocopies the IsO and tectal phenotypes of the apc mutants. These data demonstrate that Apc1-mediated restriction of Wnt/β-catenin signalling is required for maintenance of local organizers and tectal integrity.  相似文献   

17.
《Organogenesis》2013,9(2):92-99
Wnt/β-catenin signaling has come to the forefront of liver biology in recent years. This pathway regulates key pathophysiological events inherent to the liver including development, regeneration, and cancer, by dictating several biological processes such as proliferation, apoptosis, differentiation, adhesion, zonation and metabolism in various cells of the liver. This review will examine the studies that have uncovered the relevant roles of Wnt/β-catenin signaling during the process of liver development. We will discuss the potential roles of Wnt/β-catenin signaling during the phases of development, including competence, hepatic induction, expansion, and morphogenesis. In addition, we will discuss the role of negative and positive regulation of this pathway and how the temporal expression of Wnt/β-catenin can direct key processes during hepatic development. We will also identify some of the major deficits in the current understanding of the role of Wnt/β-catenin signaling in liver development in order to provide a perspective for future studies. Thus, this review will provide a contextual overview of the role of Wnt/β-catenin signaling during hepatic organogenesis.  相似文献   

18.
Zebrafish have the ability to regenerate skeletal structures, including the fin, skull roof, and jaw. Although fin regeneration proceeds by epimorphic regeneration, it remains unclear whether this process is involved in other skeletal regeneration in zebrafish. Initially in epimorphic regeneration, the wound epidermis covers the wound surface. Subsequently, the blastema, an undifferentiated mesenchymal mass, forms beneath the epidermis. In the present study, we re-examined the regeneration of the zebrafish lower jaw in detail, and investigated whether epimorphic regeneration is involved in this process. We performed amputation of the lower jaw at two different positions; the proximal level (presence of Meckel's cartilage) and the distal level (absence of Meckel's cartilage). In both manipulations, a blastema-like cellular mass was initially formed. Subsequently, cartilaginous aggregates were formed in this mass. In the proximal amputation, the cartilaginous aggregates were then fused with Meckel's cartilage and remained as a skeletal component of the regenerated jaw, whereas in the distal amputation, the cartilaginous aggregates disappeared as regeneration progressed. Two molecules that were observed during epimorphic regeneration, Laminin and msxb, were expressed in the regenerating lower jaw, although the domain of msxb expression was out of the main plain of the aggregate formation. Administration of an inhibitor of Wnt/β-catenin signaling, a pathway associated with epimorphic regeneration, showed few effects on lower jaw regeneration. Our finding suggests that skeletal regeneration of the lower jaw mainly progresses through tissue regeneration that is dependent on the position in the jaw, and epimorphic regeneration plays an adjunctive role in this regeneration.  相似文献   

19.
Appendage regeneration is a complex and fascinating biological process exhibited in vertebrates by urodele amphibians and teleost fish. A current focus in the field is to identify new molecules that control formation and function of the regeneration blastema, a mass of proliferative mesenchyme that emerges after limb or fin amputation and serves as progenitor tissue for lost structures. Two studies published recently have illuminated new molecular regulators of blastemal proliferation. After amputation of a newt limb, the nerve sheath releases nAG, a blastemal mitogen that facilitates regeneration. In amputated zebrafish fins, regeneration is optimized through depletion of the microRNA miR-133, a mechanism that requires Fgf signaling. These discoveries establish research avenues that may impact the regenerative capacity of mammalian tissues.  相似文献   

20.
The Ca(2+) signaling pathway appears to regulate the processes of the early development through its antagonism of canonical Wnt/β-catenin signaling pathway. However, the underlying mechanism is still poorly understood. Here, we show that nuclear factor of activated T cells (NFAT), a component of Ca(2+) signaling, interacts directly with Dishevelled (Dvl) in a Ca(2+)-dependent manner. A dominant negative form of NFAT rescued the inhibition of the Wnt/β-catenin pathway triggered by the Ca(2+) signal. NFAT functioned downstream of β-catenin without interfering with its stability, but influencing the interaction of β-catenin with Dvl by its competitively binding to Dvl. Furthermore, we demonstrate that NFAT is a regulator in the proliferation and differentiation of neural progenitor cells by modulating canonical Wnt/β-catenin signaling pathway in the neural tube of chick embryo. Our findings suggest that NFAT negatively regulates canonical Wnt/β-catenin signaling by binding to Dvl, thereby participating in vertebrate neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号