首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34(+) HSPCs and differentiated derivatives from CD34(+) HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.  相似文献   

2.
Human adipose tissue is a great source of adult mesenchymal stem cells (MSCs) which are recognized from their ability to self‐renew and differentiation into multiple lineages. MSCs have promised a vast therapeutic potential in treatment many diseases including tissue injury and immune disorders. However, their regenerative potential profoundly depends on patients’ age. Age‐related deterioration of MSC is associated with cellular senescence mainly caused by increased DNA methylation status, accumulation of oxidative stress factors and mitochondria dysfunction. We found that DNA methyltransferase (DNMT) inhibitor i.e. 5‐Azacytidine (5‐AZA) reversed the aged phenotype of MSCs. Proliferation rate of cells cultured with 5‐AZA was increased while the accumulation of oxidative stress factors and DNA methylation status were decreased. Simultaneously the mRNA levels of TET proteins involved in demethylation process were elevated in those cells. Moreover, cells treated with 5‐AZA displayed reduced reactive oxygen species (ROS) accumulation, ameliorated superoxide dismutase activity and increased BCL‐2/BAX ratio in comparison to control group. Our results indicates that, treating MSCs with 5‐AZA can be justified therapeutic intervention, that can slow‐down and even reverse aged‐ related degenerative changes in those cells.  相似文献   

3.
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.  相似文献   

4.
Significant progress has been made in stem cell biology, regenerative medicine, and stem cell-based tissue engineering. Such scientific strides highlight the potential of replacing or repairing damaged tissues in congenital abnormalities, diseases, or injuries, as well as constructing functional tissue or organs in vivo. Since mesenchymal stem cells (MSCs) are capable of differentiating into bone-forming cells, they constitute an appropriate cell source to repair damaged bone tissues. In addition, the immunoregulatory property of MSCs provides a foundation for their use in treating a variety of autoimmune diseases. However, the interaction between MSCs and immune cells in cell-based tissue regeneration is largely unknown. In this review, we will discuss the current understanding of MSC-based tissue regeneration, emphasizing the role of the immune microenvironment in bone regeneration.  相似文献   

5.
Mesenchymal stem cells (MSCs) are widely recognized as critical players in tissue regeneration. New insights into stem cell biology provide evidence that MSCs may also contribute to host defence and inflammation. In case of tissue injury or inflammatory diseases, e.g. periodontitis, stem cells are mobilized towards the site of damage, thus coming in close proximity to bacteria and bacterial components. Specifically, in the oral cavity, complex ecosystems of commensal bacteria live in a mutually beneficial state with the host. However, the formation of polymicrobial biofilm communities with pathogenic properties may trigger an inadequate host inflammatory‐immune response, leading to the disruption of tissue homoeostasis and development of disease. Because of their unique characteristics, MSCs are suggested as crucial regulators of tissue regeneration even under such harsh environmental conditions. The heterogeneous effects of bacteria on MSCs across studies imply the complexity underlying the interactions between stem cells and bacteria. Hence, a better understanding of stem cell behaviour at sites of inflammation appears to be a key strategy in developing new approaches for in situ tissue regeneration. Here, we review the literature on the effects of oral bacteria on cell proliferation, differentiation capacity and immunomodulation of dental‐derived MSCs.  相似文献   

6.
7.
8.
Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5mC) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation.  相似文献   

9.
10.
11.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

12.
13.
Li Z  Liu C  Xie Z  Song P  Zhao RC  Guo L  Liu Z  Wu Y 《PloS one》2011,6(6):e20526

Background

Mesenchymal stem cells (MSCs) hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood.

Methodology/Principal Findings

Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes.

Conclusions/Significance

Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation.  相似文献   

14.
Mesenchymal stem cells (MSCs) are considered to be one of the most promising therapeutic cell sources as they encompass a plasticity of multiple cell lineages. The challenge in using these cells lies in developing well-defined protocols for directing cellular differentiation to generate a desired lineage. In this study, we investigated the effect of 5-azacytidine, a DNA demethylating agent, on osteogenic differentiation of MSCs. The cells were exposed to 5-azacytidine in culture medium for 24 h prior to osteogenic induction. Osteogenic differentiation was determined by several the appearance of a number of osteogenesis characteristics, including gene expression, ALP activity, and calcium mineralization. Pretreatment of MSCs with 5-azacytidine significantly facilitated osteogenic differentiation and was accompanied by hypomethylation of genomic DNA and increased osteogenic gene expression. Taking dlx5 as a representative, methylation alterations of the “CpG island shore” in the promoter caused by 5-azacytidine appeared to contribute to osteogenic differentiation.  相似文献   

15.
Tissue engineering through autologous mesenchymal stem cells   总被引:19,自引:0,他引:19  
The regeneration of damaged cartilage in different pathological situations is a major goal for the future and could be achieved through cell and/or gene therapy. Mesenchymal stem cells (MSCs) are the progenitors of multiple lineages, including bone, cartilage, muscle, fat, and astrocytes. MSCs seem to be the best candidates for cell therapy to regenerate injured tissue, as they are easily isolated from bone marrow and can be rapidly amplified. Full healing is extremely demanding, however, and includes integration of the regenerated tissue within the surrounding host tissue and true differentiation through pathways involved in embryonic development. This goal might be reached through the combined use of scaffolds, MSC-mediated therapy and the expression of selective differentiating factors. The long-term behavior of MSCs associated with biomaterials and implanted in pathological joints remains to be investigated before clinical application in osteoarthritis or rheumatoid arthritis.  相似文献   

16.
17.

Background and Aims

Hepatic stellate cells (HSC), which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC.

Methods and Results

The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism.

Conclusions

In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.  相似文献   

18.
Methylation and demethylation of DNA are the complementary processes of epigenetic regulation. These two types of regulation influence a diverse array of cellular activities, including the maintenance of pluripotency and self-renewal in embryonic stem cells. It was generally believed that DNA demethylation occurs passively over several cycles of DNA replication and that active DNA demethylation is rare. Recently, evidence for active DNA demethylation has been obtained in several cancer, neuronal, and embryonic stem cell lines. Studies in embryonic stem cell models, however, suggested that active DNA demethylation might be restricted to the early development of progenitor cells. Whether active demethylation is involved in terminal differentiation of adult stem cells is poorly understood. We provide evidence that active DNA demethylation does occur during terminal specification of stem cells in an adipose-derived mesenchymal stem cell-derived osteogenic differentiation model. The medium CpG regions in promoters of the Dlx5, Runx2, Bglap, and Osterix osteogenic lineage-specific genes were demethylated during the increase in gene expression associated with osteogenic differentiation. The growth arrest and DNA damage-inducible protein GADD45A was up-regulated in these processes. Knockdown of GADD45A led to hypermethylation of Dlx5, Runx2, Bglap, and Osterix promoters, followed by suppression of the expression of these genes and interruption of osteogenic differentiation. These results reveal that GADD45A plays an essential role in gene-specific active DNA demethylation during adult stem cell differentiation. They enhance the current knowledge of osteogenic specification and may also lead to a better understanding of the common mechanisms underlying epigenetic regulation in adult stem cell differentiation.  相似文献   

19.
20.
间充质干细胞(mesenchymal stem cell,MSCs)是衍生自中胚层的多能细胞,可产生多种间充质谱系,包括成骨细胞、脂肪细胞、成软骨细胞和肌细胞。MSCs还具有分泌多种细胞因子的能力,可促进血管生成、上皮再生等,在再生医学领域具有巨大的潜力。研究证实,MSCs可通过分化为多种细胞类型促进组织再生,加速伤口愈合;通过分泌细胞因子改善组织纤维化;还可通过携带载体药物诱导肿瘤细胞的凋亡,抑制肿瘤的发展。然而MSCs的成纤维化潜能和促进肿瘤生长的能力降低了MSCs应用于临床治疗的安全性。总结了MSCs在肿瘤、慢性难愈合伤口、纤维化等疾病发展过程中的作用,并进一步讨论了MSCs在临床相关疾病治疗中的潜在应用价值及挑战,以期为间充质干细胞的临床应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号