首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
马铁菊头蝠不同行为下的回声定位叫声   总被引:13,自引:0,他引:13  
蝙蝠回声定位的研究自50年代以来在世界范围内经久不衰,从行为生态学及神经生物学两方面研究回声定位又是该领域最近十几年的热点.其中从行为生态学角度主要研究蝙蝠回声定位对其所处生境及捕食行为的适应性;神经生物学则研究蝙蝠通过回声定位而"观察"周围世界的神经生理学基础.相比之下我国对蝙蝠的回声定位行为研究较少,孙心德等对鲁氏菊头蝠(Rhinolophus rouxi)进行过回避障碍物及听觉神经机理的研究,而对于蝙蝠回声定位超声波信号的研究则基本是空白.  相似文献   

2.
食鱼蝙蝠形态和行为特化研究   总被引:1,自引:0,他引:1  
总结了食鱼蝙蝠种类、分布 ,及其形态结构、回声定位功能和捕食行为的研究成果。比较食鱼蝙蝠与近水面“拖网式”食虫蝙蝠在形态、回声定位信号及捕食行为方面的异、同 ,推测食鱼蝙蝠起源于“拖网式”食虫蝙蝠类 ;体形和回声定位信号的几种特异性是捕食行为进化压力 ,而环境是决定因素。  相似文献   

3.
蝙蝠听觉器的“视”功能   总被引:4,自引:0,他引:4  
介绍了蝙蝠听觉的“视”功能是如何被发现的以及二种不同类型的回声定位蝙蝠所发现的超声信号特征,同时还讨论了回声定位的分辨率和该功能的神经功能。  相似文献   

4.
科学家以蝙蝠为模式动物,从听觉、回声定位和生态适应与演化等方面开展了研究,取得了令人瞩目的成果。为适应回声定位,蝙蝠听觉系统的结构和功能产生了明显的特化。从外周到中枢形成了对声频率极为有序的表征,甚至在恒频-调频(constant frequency-frequency modulation,CF-FM)蝙蝠耳蜗形成了所谓的听觉凹,以及听皮质功能组构也模块化,成为了具有代表性的特化象征。神经元反应的潜伏期对蝙蝠不仅是基本特性,也是回声定位行为调控的一部分;研究发现,有较长潜伏期的神经元具有较尖锐的回声-延迟调谐特性,而较短潜伏期的神经元则有较宽的回声-延迟调谐特性。蝙蝠听神经元对频率调谐的精准度亦远胜于人类和其他非回声定位动物;而且,源于耳蜗听觉凹的传入在各级听中枢均显示出对回声定位信号第二谐波CF成分的过度表征,以满足对靶物回声多普勒频移探测的需要。时程是回声定位蝙蝠发声信号主动改变的参数之一,而时程调谐神经元则提供了一种编码声音时相特征的重要神经机制,匹配了对回声定位信号时相信息加工的需要。在多种回声定位蝙蝠的听中枢还发现,有回声-延迟调谐神经元,它们不仅能对靶物距离进行调谐,而且...  相似文献   

5.
蝙蝠具有高度发达的回声定位系统,能够准确地处理和整合不断变化环境中的声学参数,以保持最佳的生理和行为状态。这种行为的神经生理机制已经得到了广泛的研究。本文主要探究了CF-FM蝙蝠听觉中枢处理种属特异性声信号、共变参数、多普勒频移补偿信号及多谐波声信号的神经机制,可有助于了解回声定位蝙蝠处理行为相关声信号的神经策略。同时本文也提出将来可以CF-FM蝙蝠作为模式动物进行更深入的胞内研究。  相似文献   

6.
蝙蝠回声定位与捕食对策的研究   总被引:10,自引:3,他引:7  
蝙蝠的回声定位可以在相当程度上反映出其捕食对策以及栖息环境的特点,回声定位在强度、持续时间及频率等方面的变化模式显示出这类声学信号的多样性,而这种多样性与蝙蝠的捕食对策相关。这方面的研究在国际上历经几十年不衰,然而,在我国,蝙蝠回声定位的研究基本上是空白?..  相似文献   

7.
环境噪声会降低动物声信号可探测性,是动物声信号进化的压力。为了避免人工噪声干扰,多数脊椎动物调整其叫声的频谱-时间结构,如采用延长叫声持续时间、提高频率和增加强度等策略。本研究选择回声定位声波频率范围与交通噪声频率范围相互重叠的东方蝙蝠(Vespertilio sinensis)为研究对象,在自然条件下开展实验,研究交通噪声对蝙蝠回声定位声波的影响。本实验选择交通噪声强度存在差异的两个样点,分别录制东方蝙蝠的回声定位声波,分析其结构参数。在交通噪声强度较高的样点,东方蝙蝠回声定位声波的持续时间、斜率均未显著改变,但起始频率、主频、终止频率及带宽均显著提高。结果表明,东方蝙蝠的回声定位行为在交通噪声干扰下具有明显的可塑性。  相似文献   

8.
声音信号介导动物的资源竞争、配偶选择及反捕食等系列生活史事件,对维持动物种群稳定与群落平衡至关重要。蝙蝠占据夜空生态位,视觉退化,听觉发达,一直被视为声学研究的模式生物。本文围绕蝙蝠回声定位声波与交流声波的功能,综述当前研究现状,展望未来发展方向。纵观已有研究,蝙蝠回声定位声波具有多重功能,包括空间导航与猎物探测、水体与植被识别、协调觅食活动及传递交流信息。蝙蝠利用交流声波从事社群活动,包括社群联系、资源防御、繁殖活动及求救呼叫。绝大多数研究关注蝙蝠回声定位声波的功能,有关蝙蝠交流声波的功能近年才引起重视。未来工作有待进一步探究蝙蝠声音信号产生的影响机制。  相似文献   

9.
回声定位是高度演化、极为复杂的过程,使蝙蝠可利用大多数动物不能利用的生态位——漆黑的洞穴和黑夜的天空。对蝙蝠的回声定位研究已有近80年的历史,科学家已经从生物声学层面基本了解和认识了蝙蝠回声定位的特征、机制、生物学意义等,关于分子和神经生物学方面的机制也得到深入研究。重点介绍蝙蝠回声定位的研究历史,以及蝙蝠的超声波和回声定位在生物学和声学层面的基础知识。  相似文献   

10.
在《蝙蝠与超声波、回声定位(1)》中介绍了蝙蝠利用超声波和回声定位的基本声学原理和生物学特征。蝙蝠,特别是小蝙蝠(Microchiroptera)在使用超声波和回声定位技术方面已经演化到很高的程度,几乎是自然界在声音使用上最成功的类群。此篇继续介绍蝙蝠在超声波和回声定位方面的生态学特征和意义。  相似文献   

11.
蝙蝠通过调节回声定位声波特征来满足自身的感官需求,表现出回声定位声波的可塑性及其对生态环境与需求的适应。声波频率、强度、脉冲持续时间和间隔时间等特征与蝙蝠所处的生态位密切相关,声波可塑性在蝙蝠进化过程中起着至关重要的作用。本文结合马铁菊头蝠(Rhinolophus ferrumequinum)和大趾鼠耳蝠(Myotis macrodactylus)回声定位声波可塑性的研究,从回声定位声波的方向性、目标距离、环境复杂度和应对干扰4个方面总结了蝙蝠如何通过改变回声定位声波特征来满足自身在导航和捕捉猎物过程中的感官需求与生态适应,并阐述了回声定位声波可塑性的研究现状,为开展蝙蝠声学和行为学研究提供参考。  相似文献   

12.
Availability of preferred salmonid prey and a sufficiently quiet acoustic environment in which to forage are critical to the survival of resident killer whales (Orcinus orca) in the northeastern Pacific. Although piscivorous killer whales rely on echolocation to locate and track prey, the relationship between echolocation, movement, and prey capture during foraging by wild individuals is poorly understood. We used acoustic biologging tags to relate echolocation behavior to prey pursuit and capture during successful feeding dives by fish-eating killer whales in coastal British Columbia, Canada. The significantly higher incidence and rate of echolocation prior to fish captures compared to afterward confirms its importance in prey detection and tracking. Extremely rapid click sequences (buzzes) were produced before or concurrent with captures of salmon at depths typically exceeding 50 m, and were likely used by killer whales for close-range prey targeting, as in other odontocetes. Distinctive crunching and tearing sounds indicative of prey-handling behavior occurred at relatively shallow depths following fish captures, matching concurrent observations that whales surfaced with fish prior to consumption and often shared prey. Buzzes and prey-handling sounds are potentially useful acoustic signals for estimating foraging efficiency and determining if resident killer whales are meeting their energetic requirements.  相似文献   

13.
The use of bioacoustics as a tool for bat research is rapidly increasing worldwide. There is substantial evidence that environmental factors such as weather conditions or habitat structure can affect echolocation call structure in bats and thus compromise proper species identification. However, intraspecific differences in echolocation due to geographical variation are poorly understood, which poses a number of issues in terms of method standardization. We examined acoustic data for Pteronotus cf. rubiginosus from the Central Amazon and the Guiana Shield. We provide the first evidence of intraspecific geographic variation in bat echolocation in the Neotropics, with calls significantly differing in almost all standard acoustic parameters for the two lineages of this clade. We complement our bioacoustic data with molecular and morphological data for both species. Considerable overlap in trait values prevents reliable discrimination between the two sympatric Pteronotus based on morphological characters. On the other hand, significant divergence in the frequency of maximum energy suggests that bioacoustics can be used to readily separate both taxa despite extensive intraspecific variability in their echolocation across the Amazon. Given the relative lack of barriers preventing contact between bat populations from the Central Amazon and French Guiana, the documented acoustic variation needs to be further studied in geographically intermediate locations to understand the potential isolation processes that could be causing the described divergence in echolocation and to determine whether this variation is either discrete or continuous.  相似文献   

14.
Passive acoustics has been used extensively to study bottlenose dolphins; yet very few studies have examined the spatial, temporal, and environmental influences on vocalization types (echolocation, burst pulse sounds, and whistles), and few are long-term and provide high temporal resolution over multiple years. We used data from 2013 to 2018 to establish baseline acoustic patterns for bottlenose dolphins in the May River estuary, South Carolina. We deployed acoustic recorders at six stations during 2013–2014 and three stations during 2015–2018, with locations spanning the entire estuary (headwaters to the mouth). We discovered that acoustic detection of dolphins varied not only spatially, but also yearly, monthly, and tidally. Higher numbers of echolocation bouts, burst pulse sounds, and whistles were detected at the mouth as compared to the headwaters. At the mouth, vocalization detections were greatest in fall and winter for multiple years, and echolocation detection was greatest during falling and low tides. This study provides an example of another tool, long-term passive acoustics monitoring, to better understand spatial and temporal distribution of dolphins in a typical salt marsh estuary, that can be applied to other ecosystems throughout the southeastern United States and globally.  相似文献   

15.
An echolocating bat actively controls the spatial acoustic information that drives its behavior by directing its head and ears and by modulating the spectro-temporal structure of its outgoing sonar emissions. The superior colliculus may function in the coordination of these orienting components of the bat's echolocation system. To test this hypothesis, chemical and electrical microstimulation experiments were carried out in the superior colliculus of the echolocating bat, Eptesicus fuscus, a species that uses frequency modulated sonar signals. Microstimulation elicited pinna and head movements, similar to those reported in other vertebrate species, and the direction of the evoked behaviors corresponded to the site of stimulation, yielding a map of orienting movements in the superior colliculus. Microstimulation of the bat superior colliculus also elicited sonar vocalizations, a motor behavior specific to the bat's acoustic orientation by echolocation. Electrical stimulation of the adjacent periaqueductal gray, shown to be involved in vocal production in other mammalian species, elicited vocal signals resembling acoustic communication calls of E. fuscus. The control of vocal signals in the bat is an integral part of its acoustic orienting system, and our findings suggest that the superior colliculus supports diverse and species-relevant sensorimotor behaviors, including those used for echolocation.  相似文献   

16.
Ecologists and evolutionary biologists have a long‐standing interest in the patterns and causes of geographical variation in animals’ acoustic signals. Nonetheless, the processes driving acoustic divergence are still poorly understood. Here, we studied the geographical variation in echolocation vocalizations (commonly referred to as echolocation ‘pulses’ given their short duration and relatively stereotypic nature, and to contrast them from the communicative vocalizations or ‘calls’) of a widespread bat species Hipposideros armiger in south China, and assessed whether the acoustic divergence was driven by either ecological selection, or cultural or genetic drift. Our results revealed that the peak frequency of echolocation pulses varied significantly across populations sampled, with the maximum variation of about 6 kHz. The peak frequency clustered into three groups: eastern and western China, Hainan and southern Yunnan. The population differences in echolocation pulses were not significantly related to the variation in climatic (mean annual temperature, mean annual relative humidity, and mean annual precipitable water) or genetic (genetic distance) factors, but significantly related to morphological (forearm length) variation which was correlated with mean annual temperature. Moreover, the acoustic differences were significantly correlated with geographical and latitudinal distance after controlling for ‘morphological distance’. Thus, neither direct ecological selection nor genetic drift contributed to the acoustic divergence observed in H. armiger. Instead, we propose that the action of both indirect ecological selection (i.e. selection on body size) as well as cultural drift promote, in part, divergence in echolocation vocalizations of individuals within geographically distributed populations.  相似文献   

17.
All organisms have specialized systems to sense their environment. Most bat species use echolocation for navigation and foraging, but which and how ecological factors shaped echolocation call diversity remains unclear for the most diverse clades, including the adaptive radiation of neotropical leaf‐nosed bats (Phyllostomidae). This is because phyllostomids emit low‐intensity echolocation calls and many inhabit dense forests, leading to low representation in acoustic surveys. We present a field‐collected, echolocation call dataset spanning 35 species and all phyllostomid dietary guilds. We analyze these data under a phylogenetic framework to test the hypothesis that echolocation call design and parameters are specialized for the acoustic demands of different diets, and investigate the contributions of phylogeny and body size to echolocation call diversity. We further link call parameters to dietary ecology by contrasting minimum detectable prey size estimates (MDPSE) across species. We find phylogeny and body size explain a substantial proportion of echolocation call parameter diversity, but most species can be correctly assigned to taxonomic (61%) or functional (77%) dietary guilds based on call parameters. This suggests a degree of acoustic ecological specialization, albeit with interspecific similarities in call structure. Theoretical MDPSE are greatest for omnivores and smallest for insectivores. Omnivores significantly differ from other dietary guilds in MDPSE when phylogeny is not considered, but there are no differences among taxonomic dietary guilds within a phylogenetic context. Similarly, predators of non‐mobile/non‐evasive prey and predators of mobile/evasive prey differ in estimated MDPSE when phylogeny is not considered. Phyllostomid echolocation call structure may be primarily specialized for overcoming acoustic challenges of foraging in dense habitats, and then secondarily specialized for the detection of food items according to functional dietary guilds. Our results give insight into the possible ecological mechanisms shaping the diversity of sensory systems, and their reciprocal influence on resource use.  相似文献   

18.
19.
Monitoring programmes for white whales (Delphinapterus leucas) have been called for repeatedly in recent years because this species is likely to be negatively impacted by climate change, but also because such a broadly dispersed, high trophic feeder can serve as an effective ecosystem sentinel. Arctic ecosystems are difficult to monitor because of the extensive winter ice coverage and extreme environmental conditions in addition to low human population densities. However, passive acoustic monitoring has proved to be a reliable method to remotely survey the presence of some marine mammals in the Arctic. In this study, we evaluate the potential use of echolocation loggers (T-POD and C-POD, Chelonia Ltd.) for remote monitoring of white whales. Captive experiments and open water surveys in three arctic/subarctic habitats (ice-noise-dominated environment, ice-free environment and low-turbidity waters) were used to document detection performance and to explore the use of logger angle and inter-click interval data to look at activity patterns and tidal influences on space use. When acoustic results were compared to concurrent visual observations, echolocation detection was only attributed to periods of white whale presence near the recorder deployment sites. Both T-PODs and C-PODs effectively detected echolocation, even under noisy ice. Diel and tidal behavioural patterns were identified. Acoustically identified movement patterns between sites were visually confirmed. This study demonstrates the feasibility of monitoring white whales using echolocation loggers and describes some important features of their behaviour as examples of the potential application of this passive acoustic monitoring method in Arctic and subarctic regions.  相似文献   

20.
Bioacoustic research has made several advancements in developing systems to record extensive acoustic data and classify bat echolocation calls to species level using automated classifiers. These systems are useful as echolocation calls give valuable information on bat behaviour and ecology and hence are widely used for research and conservation of bat populations. Despite the challenges associated with automated classifiers, due to the interspecific differences in call characteristics of bat species found in the Maltese Islands, the use of a quantitative and automated approach is investigated. The sound analysis pipeline involved the use of an algorithm to clean sound files from background noise and measure temporal and spectral parameters of bat echolocation calls. These parameters were then fed to a trained and validated artificial neural network using a bat call library built from reference bat calls from Malta. The automatic classifier achieved an overall correct classification rate of 98%. This high correct classification rate for reliable species identification may have benefitted from the absence of typically problematic species, such as species in the genus Myotis, in the analyses. This study’s results pave the way for efficient and reliable bat acoustic surveys in Malta in aid of necessary monitoring and conservation by providing an updated bat species list and their echolocation characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号