首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The isolation layer of the graft union is a changeable component. It is formed and thickened during the early stage (Fig. 6) and disrupted, thinned and even disappeared durmg tile later stage of development of the graft (Fig. 1, 2, 14). A number of vesicles, paramarat bodies (Fig. 3, 5, 8, 9, 11, 13, 19), multivesicular bodies (Fig. 4, 15, 16, 18, 20) and concentric membrane bodies (Fig. 7) are observed in callus 'beside the isolation layer during both stages of development based on transmission electron microscopy. The paramural body comprises invagination of plasmalemma containing numerous vesicles and/or tubules situated between the cell wall and the plasmalemma. The multivesicular body is a organelle about 0.5-μm in diameter with a single membrane surrounding several smaller single vesicles. It is possible that multivesicular body and/or single iesicles transverse the plasmalemma to produce paramural body. The figures show that the paramural bodies appear always beside the isolalion layer at the different stages of development of the graft union and the multivesicular bodies appear mostly near the region where plasmodesmata are secondarily formed between the stock and the scion (Fig. 15, 17, 20). This may reflect that paramural body and multivesi- cular body, as well as single vesicles, are capable of performing vesicular transport. The deposition and reabsorption of material of the isolation layer occur due to vesicular transport. All the above facts seem to indicate that paramural body, multivesicular body and single vesicles can be both endocytotic and exocytotic. The present study supports the theory of vesicular transport, and authors suggest that transcellular cytosis occurs not only through plasmodesmata but also through plasmalemma in oapoplast. The single vesicles, paramural bodies and multivesicular bodies take an active part in the transport process of symplast-apoplast-symplast.  相似文献   

2.
Summary Freeze-etched hyphae of F. oxysporum exhibited a single layered cell wall; a plasmalemma, in which invaginations were frequently associated with paramural vesicles; cytoplasma bearing lipid droplets, vacuoles, intravacuolar vesicles and nuclei with typical nuclear pores. Some hyphae bore crystalline inclusions characterized by a pronounced hexagonal, external ornamentation and it is suggested that the presence of these crystals and intravacuolar vesicles are indicative of aging hyphae.  相似文献   

3.
Summary Freeze-etch replicas of basidiospores of Panaeolus campanulatus treated for 16 hours in glycerol showed that germination processes had been initiated. The plasmalemma bore evaginations, abstricting vesicles into the paramural space, and the nuclear envelope evaginated abstricting promitochondrial initials. The significance of these results is discussed in relation to previous work on chemically-fixed spores of various fungi.  相似文献   

4.
Summary Young stems ofCitrus plants were infected with the fungusPhytophthora citrophthora. The effect of the infection on gum duct development was studied. The following sequence of structural changes was observed in the cambial zone: 1. The middle lamellae between layers of xylem mother cells dissolve forming duct cavities. 2. The cells around the duct cavities differentiate into epithelial cells rich in cytoplasm. 3. The amount of Golgi bodies and associated vesicles increases. The vesicles and small vacuoles, some of which seem to originate from the fusion of Golgi vesicles, contain fibrillar material that stains for polysaccharides. Vesicles and vacuoles appear to fuse with the plasmalemma. Material staining positively for polysaccharides accumulates between the plasmalemma and cell wall, and penetrates the latter. 4. The protoplast shrinks and the space below the cell wall, which contains polysaccharides, increases in volume. 5. After a period of 10 days or more the gum ducts become embedded in the xylem, and the activity of the epithelial cells ceases. The cell walls of many of them break, and the gum still present in the cells is released.  相似文献   

5.
Summary Freeze etched replicas of hyphae of Verticillium dahliae revealed the presence of paramural bodies and elaborations of the plasmalemma. It is suggested that the presence of these structures in freeze etched preparations is indicative of their presence in living cells rather than as post-mortem artifacts following fixation.  相似文献   

6.
Summary Development of the plurilocular male gametangium inCutleria hancockii Dawson is fundamentally similar to that of the female gametangium. However, the sequence of mitoses is less regular and the number of divisions is more variable in the male structure. During mitosis the nucleolus disappears and the nuclear envelope breaks down into vesicles and cisternae. No well-defined chromosomal kinetochores were observed. The spindle does not persist during telophase. At least two types of vesicles, but no microtubules, are associated with cytokinesis. After cleavages are completed, each of the cells develops an eyespot and two flagella. The flagellar rootlet system consists of 4–5 bands of 5–10 microtubules radiating posteriorly from the basal bodies. Flocculent material surrounding the gamete at maturity may be involved with liberation. Prior to release, a pore is formed in each locule when the outermost layers of the surficial wall break, and the innermost layers expand out through this weakened region. The inner wall eventually bursts, releasing the gamete and flocculent material through the pore. The liberated gamete has a long, pleuronematic anterior flagellum, and a short, acronematic posterior flagellum which has a swollen base appressed to the plasmalemma.  相似文献   

7.
Localized cell wall modification and accumulation of antimicrobial compounds beneath sites of fungal attack are common mechanisms for plant resistance to fungal penetration. In barley (Hordeum vulgare) leaves, light-microscopically visible vesicle-like bodies (VLBs) containing H(2)O(2) or phenolics frequently accumulate around cell wall appositions (syn. papillae), in which the penetration attempt of the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) is halted. By ultrastructural analyses, we demonstrated that the Bgh-induced VLBs represent different structures. VLBs intensively stained by H(2)O(2)-reactive dyes were actually small papillae instead of cytoplasmic vesicles. Other VLBs were identified as osmiophilic bodies or multivesicular compartments, designated paramural bodies (PMBs) and multivesicular bodies (MVBs). MVBs seemingly followed two distinct pathways: either they were engulfed by the tonoplast for degradation in the vacuole or they fused with the plasma membrane to release their internal vesicles into the paramural space and hence could be the origin of PMBs. MVBs and PMBs appeared to be multicomponent kits possibly containing building blocks to be readily assembled into papilla and antimicrobial compounds to be discharged against fungal penetration. Finally, we propose that released paramural vesicles might be similar to exosomes in animal cells.  相似文献   

8.
Summary Differentiation of the female gametangium inCutleria bancockii Dawson is described. Four series of mitoses result in a 16-locule structure (four tiers of four cells each). The organelles in each locule become polarized after partitioning is complete, with the mitochondria lying near the longitudinal axis of the gametangium. The nucleus and plastids are centrally located, with abundant osmiophilic material present in the cytoplasm subjacent to the gametangial surface. Both electron density and Toluidine Blue 0 staining of the material increase. Two flagella are then produced: one becomes tightly appressed to the plasmalemma near its base, and the other is free. A prominent eyespot forms in the plastid nearest the developing flagella. Golgi and endoplasmic reticulum vesicles are prolific in this region and seem to be involved with mastigoneme production and deposition on the free flagellum. Immediately beneath the plasmalemma, flagellar rootlet tubules emanate from amorphous masses near the basal bodies. Some of these tubules are associated with the eyespot. Most of the osmiophilic material is then secreted into the extracytoplasmic spaces while the gametes are rounding up. Granular-cored vesicles may be involved with pore formation and gamete release.  相似文献   

9.
On the ultrastructure of differentiating secondary xylem in willow   总被引:1,自引:1,他引:0  
A. W. Robards 《Protoplasma》1968,65(4):449-464
Summary Studies of differentiating xylem inSalix fragilis L. show the immediate cambial derivatives to be ultrastructurally similar. The Golgi apparatus is important at all stages of wall synthesis, possibly producing (amongst other substances) hemicellulose material which is carried to the wall in vesicles or multivesicular bodies. The endoplasmic reticulum also contributes one or more components to the developing wall: at some stages during differentiation the endoplasmic reticulum produces electron opaque bodies which appear to be guided towards the wall by microtubules. Compact structures formed from concentric membranes (myelin-like bodies) have been found joined to rough endoplasmic reticulum, but their presence is not explained.Two types of plasmalemma elaboration occur: invagination of the plasmalemma itself to form vesicles which may contain cytoplasmic material; and vesicles between the plasmalemma and cell wall which are the result of single vesicles or multivesicular bodies traversing the plasmalemma. Both systems provide a means for transporting cytoplasmic material across the plasmalemma.Microtubules have been seen associated with all vesicles derived from the cytoplasm which appear to be moving towards the wall. The presence of microtubules may generally be explained in terms of orientation of vesicles, even if they also happen coincidentally to parallel the supposed orientation of microfibrils in the wall itself. It is possible to resolve connections between the microtubules and the plasmalemma.  相似文献   

10.
ABSTRACT. Microgamonts and macrogamonts of Eimeria truncata were observed in renal epithelial cells of collecting tubules and ducts and occasionally in macrophages of experimentally infected lesser snow geese (Anser c. caerulescens) beginning 8.5 days post inoculation. Intraparasitophorous vesicles in parasitophorous vacuoles of both types of gamonts appeared to originate in host cell cytoplasm and enter gamonts through micropores by budding of plasmalemma or by pinocytosis. Within the parasite's cytoplasm, the vesicles were broken down in Golgi-associated vacuoles. The surfaces of microgamonts were highly invaginated to facilitate extrusion of numerous microgametes. Formation and maturation of microgametes were similar to those of other eimerian species. Each microgamete had two flagella, a mitochondrion, and a peculiarly shaped electron-dense nucleus that was oval anteriorly in cross section and somewhat dumbbell-shaped posteriorly. A longitudinally arranged inner membrane complex lay between a portion of the mitochondrion and the plasmalemma. About five subpellicular microtubules extended the length of the microgamete body. Macrogametogony differed little from that described in other eimerian species. Type 1 wall-forming bodies (WFB) formed in Golgi complexes early in macrogametogony, and type 2 WFB formed in cisternae of endoplasmic reticulum in intermediate stages of macrogamont development.  相似文献   

11.
Lange  L.  Olson  L. W.  Safeeulla  K. M. 《Protoplasma》1984,119(3):178-187
Summary Cleavage of the zoosporangial cytoplasm ofSclerospora graminicola, the causal agent of pearl millet downy mildew, is by means of the fusion of cleavage vesicles and vesicles containing the extruded axoneme with the cell membrane. This type of zoosporogenesis linksS. graminicola to other Peronosporalean species, and is very similar to that seen for all uniflagellate species examined to date, while it separates it from species of theSaprolegniales where zoosporogenesis is brought about by the expansion of the central vacuole, or where the plasmalemma alone is used.The origin of the cleavage vesicles appears to be from the dictyosomes and not from the finger-print bodies which are rapidly formed in large numbers after axoneme formation and after the cleavage. vesicles have started to appear in the cytoplasm.  相似文献   

12.
Summary InMagnolia ×soulangeana pollen grains the generative cell (GC) does not become totally free within the vegetative cell (VC), at least until the pollen tube emergence. Due to a deviation in its detachment process from the sporoderm, the opposing ends of the VC plasmalemma do not fuse themselves when the GC moves away from the intine. Consequently, the interplasmalemmic space surrounding the GC does not become isolated but rather maintains continuity with the sporoderm through a complex formation that we have called plasmalemmic cord. The real existence of this formation was confirmed through serial sectioning showing the plasmalemmic cord to consist of the VC plasmalemma. In its initial portion it is occupied by a reasonably accentuated wall ingrowth of the inner layer of the intine (intine 3). In the remainder portion, neither of the cytochemical tests used in this work have revealed the presence of a significant amount of wall material. However, ultrathin sections of samples processed either chemically or by cryofixation showed the existence of an intricate system of tubules and vesicles, some of which are evaginations of the VC plasmalemma. The hypothesis that the plasmalemmic cord may have a role in the complex interactions between the two pollen cells is discussed.  相似文献   

13.
Summary Electron microscopy of protocorms of Dactylorhiza purpurella infected with a symbiotic Rhizoctonia sp. showed that the intracellular hyphae examined did not penetrate the plasmalemma of the host cell. Walls of hyphae within cells bore many hemispherical protuberances over which the host plasmalemma was closely pressed. we estimate that these protuberances would increase the area of contact between hyphae and host plasmalemma by about 15%. They were not found on hyphae growing on agar. Except for these protuberances, and some vesicles or tubules which invaginated the fungus plasmalemma, no other structures were seen which could be suggested to be adaptations to transport across the living fungus-host interface.  相似文献   

14.
Summary The routes for adsorptive and receptor-mediated endocytosis were studied in vivo after microinjection of tracers into the lumen of the seminiferous tubules, and in vitro in isolated germ cells of different mammals. Cationic ferritin was located on the plasma membrane, in vesicles, in tubules, in multivesicular bodies and in lysosome-like granules of mouse spermatocytes. In these cells the number of multivesicular bodies varied during spermatogenesis. Spermatids and to a lesser extent residual bodies also performed adsorptive endocytosis. In the rat and monkey (Macaca fascicularis) diferric transferrin was specifically taken up by germ cells via receptor-mediated endocytosis. The labelling was observed subsequently in membrane pits, vesicles, endosome-like bodies and pale multivesicular bodies. A progressive decrease in the frequency of the labelling of the germ cells by transferrin-gold particles was observed from spermatogonia to spermatocytes and to early spermatids, which could indicate that iron is particularly required by germ cells during the mitotic and meiotic processes. Adsorptive and receptor-mediated endocytosis therefore occurs in all classes of germ cells. These endocytic processes are most probably required for germ cell division, differentiation and metabolism.  相似文献   

15.
Certain aspects of protocorm development in Vanda were examined ultrastructurally. The parenchymal cells of the protocorm accumulate substantial quantities of lipid, protein, and carbohydrate reserves which disappear gradually with the senescence of the parenchymatous region. The proteinaceous reserves appear initially as discrete bodies which become intimately associated with clusters of small tubules. The tubules eventually disperse throughout the cytoplasm and disappear following depletion of the protein bodies. The lipid reserves also appear as discrete bodies and are associated with an electron dense, laminated inclusion which appears to increase in size with the disappearance of the lipid bodies. While plastids in the meristematic cells differentiate a well-developed thylakoid system and contain little starch, those of the parenchymal cells contain large starch grains and numerous osmiophilic droplets and develop meager thylakoid systems. Membrane-bound crystalline structures of hexagonal and rhomboid cross section occur frequently in the cytoplasm of senescent parenchyma cells. Trichome initials, which differentiate from the epidermis, contain few conventional organelles and exhibit numerous membrane-bound structures containing many small crystalline inclusions. Numerous vesicles accumulate at the tips of the trichomes in spaces between the cell wall and the plasmalemma.  相似文献   

16.
Summary The jejunal absorptive cells of the salamander Amphiuma, when examined using transmission electron microscopy, were found to possess a unique type of intracellular vacuole containing membranous tubules. These vanoles, tentatively named multitubular bodies, were located in the cytoplasm between the nucleus and the brush-border membrane, and were seen with greatest frequency in the summer and fall. The vacuoles containing multitubular bodies had an average diameter of 0.6 m, and the membranous tubules within had an average diameter of 30 nm. The tubules differed morphologically from the vesicles in the multivesicular bodies, and from the primary lysosomes in the polylysosomal vacuoles. The tubules did not exhibit acid phosphatase activity, and were of similar diameter and membrane thickness as the Golgi saccules. In contrast to the multivesicular bodies, the multitubular bodies did not take up exogenous horseradish peroxidase. Early forms of autophagosomes resembling these vacuoles were often seen in the para-Golgi region of the cell. The multitubular bodies may represent a distinct type of autophagosome. Although the exact origin of the tubules as well as their role in cellular activity is unclear, their seasonal appearance within the multitubular bodies of the absorptive cells suggests a unique means of selective down-regulation of Golgi-like organelles.  相似文献   

17.
Haixin Xu  Kurt Mendgen 《Planta》1994,195(2):282-290
Te penetration hypha of basidiospore-derived infection structures of the cowpea rust fungus (Uromyces vignae Barclay) in epidermal cells of the nonhost, broad bean (Vicia faba L.), was studied with the electron microscope after high-pressure freezing and freeze substitution. After fungal invasion of the epidermis, a plug in the penetration hypha separated the infection structures on the cuticle from the intraepidermal vesicle of the fungus. The plug and the fungal cell wall reacted with a polyclonal 1,3-β-glucan antibody. The plug in the haploid stage seems to have a task similar to the septum formed in the diploid stage of the fungus. Around the penetration hypha, the plant wall stained darkly and a papilla was deposited by the plant. In the papilla, 1,3-β-glucans were labelled by a monoclonal and a polyclonal antibody. In the infected epidermal cell, clathrin-coated pits, coated vesicles, partially coated reticula and multivesicular bodies were found. The contents of the coated pits, coated vesicles, partially coated reticula and multivesicular bodies bound to monoclonal and polyclonal 1,3-β-glucan antibodies. Accumulation and uptake of this paramural material into the plant cell by endocytosis is concentrated at the fungal penetration site. It may influence the host-parasite interaction.  相似文献   

18.
利用光镜及透射电子显微镜技术研究了杭白芷根中分泌道结构及其挥发油的分泌,并重点探讨分泌道中挥发油的分泌过程。结果显示:(1)杭白芷的分泌道是由上皮细胞围绕着的伸长的胞间隙,腔道内贮存着挥发油。(2)分泌道细胞的质体、细胞基质以及线粒体参与挥发油或其前体物质的合成。(3)在分泌道发育的后期,大量小泡与分泌细胞的液泡膜和细胞质膜融合,将其内的物质释放进入空腔。研究认为,杭白芷分泌道中挥发油主要合成部位为质体及细胞基质,之后以扩散渗透或通过膜质小泡与液泡及质膜融合这两种方式分泌到空腔内,丰富的线粒体可能为这一系列过程提供能量。  相似文献   

19.
Summary P-protein and the changes it undergoes after wounding of sieve tubes of secondary phloem in one- to two-year old shoots ofHevea brasiliensis has been studied using electron microscopy. The P-protein in the form of tubules with a diameter of 8–9 nm and a lumen of 2–2.5 nm occurred in differentiating sieve elements and appeared as compact bodies which consisted of small aggregates of the tubules. As the sieve elements matured, these P-protein bodies dispersed with a disaggregation of the tubules before they turned into striated fibrils, 10–11 nm in diameter. In wounding experiments, as the mature sieve elements collapsed after cutting, their striated P-protein converted into tubules. These tubules were the same in ultrastructure as the tubules in differentiating sieve elements and they often were arranged in crystalline aggregates.  相似文献   

20.
The presence of visible multilamellar bodies in the cytoplasm of pollen grains of at least seven species of the family Papaveraceae has led us to study the behaviour of these bodies during pollen-grain ontogeny and in growing pollen tubes of Sarcocapnos pulcherrima C. Morales & R. Garcia germinated in vitro. Our transmission-electron-microscope (TEM) studies in pollen grains show that the multilamellar bodies may be classified as: 1) small, isolated and placed in the region of apertures in the cytoplasm; and 2) large, in clusters and in contact with the active plasmalemma apertures only when tubules are being formed in the apertural intine. Similar types of multilamellar bodies to those observed in the pollen apertures can be seen near the apex of the growing pollen tube (small and isolated) and in contact with the apex plasmalemma (large and clustered). Our results support the hypothesis that the multilamellar bodies are functionally linked to moments when the cytoplasmic membrane is very active. We have also linked the multilamellar bodies to Golgi vesicles as they both react positively to acid-phosphatase (AP) staining and also to the plasmalemma by the thiocarbohydrazide-silver proteinate-staining (TCH-Sp) electron-contrasting technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号