首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The structure of the kidney of the Swiss albino mouse changes progressively during the first 2 weeks after birth. Cells proliferate to form new nephrons, cells differentiate by acquiring specialized membranous components, and certain cytological features which are present at birth diminish in abundance or disappear. The differentiation of the cells of the cortical tubules has been studied using the light and electron microscopes. The tubules are partially and variably differentiated at birth. During the first 2 weeks after birth the brush border develops in the proximal tubules by the accumulation of numerous microvilli on the apical cell margins. Basal striations develop in proximal and distal tubules as an alignment of mitochondria, the result of what appears to be progressive interlocking of adjacent fluted cells. The mitochondria increase in number and size, accumulate homogeneous matrix, and acquire small, very dense granules. The collecting ducts develop tight pleating of the basal cell membranes, and dark cells containing numerous small cytoplasmic vesicles and microvilli appear. At birth there are dense irregular cytoplasmic inclusions presumed to be lipide in renal cells, the cytoplasmic granules of Palade are abundant, and there are large round bodies in the cells of the proximal tubules. The lipide inclusions disappear a few days after birth, and the cytoplasmic granules of Palade diminish in abundance as the cells differentiate. The large round bodies in the proximal tubules consist of an amorphous material and contain concentrically lamellar structures and mitochondria. They resemble the cytoplasmic droplets produced in the proximal tubules of adult rats and mice by the administration of proteins. The large round bodies disappear from the proximal tubules of infant mice during the first week after birth, but the concentric lamellar structures may be found in adult mice.  相似文献   

2.
The structure of the kidney of the Swiss albino mouse changes progressively during the first 2 weeks after birth. Cells proliferate to form new nephrons, cells differentiate by acquiring specialized membranous components, and certain cytological features which are present at birth diminish in abundance or disappear. The differentiation of the cells of the cortical tubules has been studied using the light and electron microscopes. The tubules are partially and variably differentiated at birth. During the first 2 weeks after birth the brush border develops in the proximal tubules by the accumulation of numerous microvilli on the apical cell margins. Basal striations develop in proximal and distal tubules as an alignment of mitochondria, the result of what appears to be progressive interlocking of adjacent fluted cells. The mitochondria increase in number and size, accumulate homogeneous matrix, and acquire small, very dense granules. The collecting ducts develop tight pleating of the basal cell membranes, and dark cells containing numerous small cytoplasmic vesicles and microvilli appear. At birth there are dense irregular cytoplasmic inclusions presumed to be lipide in renal cells, the cytoplasmic granules of Palade are abundant, and there are large round bodies in the cells of the proximal tubules. The lipide inclusions disappear a few days after birth, and the cytoplasmic granules of Palade diminish in abundance as the cells differentiate. The large round bodies in the proximal tubules consist of an amorphous material and contain concentrically lamellar structures and mitochondria. They resemble the cytoplasmic droplets produced in the proximal tubules of adult rats and mice by the administration of proteins. The large round bodies disappear from the proximal tubules of infant mice during the first week after birth, but the concentric lamellar structures may be found in adult mice.  相似文献   

3.
The tissues of the sporocarp of Marsilea vestita undergo profound changes during development. Early in development, the cells of the peripheral tissues, epidermis, hypodermis and layers of the transitional zone between the hypodermis and more internal tissues contain prominent vacuolar bodies. As development proceeds, these vacuolar bodies disappear. Prominent amyloplasts are found only in the guard cells and in the cells of the transitional zone. Later in development the cells of the hypodermis divide periclinally forming two layers which differentiate as macrosclereids. The cells of the outermost layer of the transitional zone differentiate as osteosclereids. Internally, the cells of the sorophore accumulate large amounts of mucilage in the central vacuoles. The peripheral cytoplasm ultimately degenerates leaving just hygroscopic mucilage. The mucilage carbohydrate contains the sugars, rhamnose and arabinose. In the young sorus, only the spore mother cells and the cells of the indusium contain amyloplasts. By the time of meiosis, there is a massive accumulation of starch in the receptacle, stalk and jacket but not in the tapetum of the sporangia. Late in development, the starch disappears and the mega- and microspores become coated with carbohydrate.  相似文献   

4.
The endosperm of Washingtonia filifera consists of living cells with the same general cellular structure throughout the seed. The major storage reserves are carbohydrate, stored in the form of thickened walls; lipid, stored as numerous small lipid bodies which fill the cytoplasm; and protein, stored as large, but variably-sized, protein bodies. The protein bodies contain two types of inclusions: prismatically-shaped denser protein crystalloids and small crystalline deposits presumed to be phytic acid. The X-ray microanalysis shows these crystalline inclusions do contain P, Ca, Mg, and Fe. Protein bodies are positively stained with PAS. Nuclei are present in all cells, but stain very palely. Plastids and mitochondria are present, but infrequently seen. The plastids have few, poorly developed membranes. Endoplsasmic reticulum and dictyosomes are lacking. The cell wall is thick except in areas of pit fields and consists of three layers which differ in their staining with toluidine blue and in their ultrastructural characteristics: middle lamella, thickened outer wall, and thin inner wall. All wall layers are positively stained with PAS and calcofluor. Although general structural features of the endosperm in Washingtonia filifera are similar to those in date seeds, the composition of the wall polysaccharides and protein bodies appear to differ somewhat.  相似文献   

5.
This investigation begins with the late zygote and traces ultrastructural development to the late globular stage of the embryo. Two nucleoli and satellite nucleoli sometimes occur in the zygote nucleus. Mitochondria, dictyosomes, cytoplasmic ribosomes, rough ER, and lipid bodies are numerous in the zygote. Microbodies are occasionally seen. The cell wall becomes well developed before the first division. No plasmodesmata occur in the zygote wall. The basal cell of the proembryo and the suspensor cells of the later embryo have very dense cytoplasm with a high concentration of cytoplasmic ribosomes. The nuclei are very electron opaque. The terminal cell and the cells of the embryo proper have a fine structure similar to that of the zygote. Plastids increase in number, size, starch content, and amount of thylakoid lamellae as the embryo develops. Mitochondria are numerous and appear active at all stages. Dictyosome activity, ribosomal aggregation, and the amount of ER are highest during the late globular stage. Lipid bodies are present up to the early globular stage, then disappear. The inner cell walls of the embryo are thin and have many plasmodesmata. These walls begin to thicken at the late globular stage, and at this time the size of the embryo begins to show an increase over that of the zygote. The results show a corresponding increase in the amount and activity of the metabolic machinery as the development of the embryo progresses. Lipids are probably more important as a nutrient source in the zygote and early embryo; starch becomes more important in the late stages. Absorption of nutrient material into the embryo sac and developing embryo appears to be from the chalazal end.  相似文献   

6.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

7.
R.S. Sohal 《Tissue & cell》1974,6(4):719-728
The epithelium of the Malpighian tubules in the housefly is comprised of four distinct cellular types. Type I cells are characterized by the presence of intimate associations between infoldings of basal plasma membrane and mitochondria. On the luminal surface, cytoplasm is extended into microvilli which contain mitochondria. Membrane-bound vacuoles in the cytoplasm seem to progressively accumulate granular material. Type II cells have dilated canaliculi. Microvilli lack mitochondria. The Type III cell has not been reported previously in Malpighian tubules. It has very well-developed granular endoplasmic reticulum which contains intracisternal bundles of tubules. Cytoplasm contains numerous electron dense bodies. Type IV cells occur in the common duct region of the Malpighian tubules. Mitochondria do not extend into the microvilli.  相似文献   

8.
Adult I. hypselobagri live in the swim bladder of the Indian catfish Wallago attu, a gaseous environment with a relatively high oxygen content. The ventral tegument, which in life is applied close to the swim bladder wall, is relatively unspecialized, showing typical ultrastructural features of the digenean surface. The dorsal tegument, which is exposed to the oxygen-rich surroundings, has numerous pyriform extensions of superficial parenchymal cells closely applied to the base of the surface syncytium. These extensions bear numerous mitochondria and send finger-like processes deep into the basal cytoplasm of the syncytium where they interdigitate with corresponding infolds of the basal tegument membrane. The pyriform parenchymal extensions are connected with underlying nucleated cell bodies via irregular glycogen-filled tubular processes, many of which end blindly in the interstitial tissue or expand into glycogen-filled bulbs beneath the cell bodies. These superficial parenchymal processes associate at gap junctions with ramifications of a distinct deeper parenchymal tissue which contains lipid, residual bodies and glycogen. The dorsal tegument and associated structures may constitute a respiratory organ, taking advantage of molecular oxygen diffusing across the surface syncytium to carry out aerobic energy transduction in the superficial parenchymal extensions. ATP so generated may diffuse inwards for distribution throughout the body in the deep parenchymal tissue. The extensive network of ramifying cytoplasmic tubules is supported by a fibrous matrix of interstitial tissue.  相似文献   

9.
An electron microscope study of the vitelline follicles of Gorgoderina vitelliloba indicates that they contain vitelline cells in various stages of development. Juvenile cells are small and characterised by a little cytoplasm. During differentiation a large amount of granular endoplasmic reticulum develops. In more mature cells, indistinct Golgi complexes give rise to globules of shell protein which migrate to form clusters at the periphery of the cell. Further maturation results in the appearance of large lipid bodies in the vitelline cell cytoplasm.Developing vitelline cells are ensheathed by nurse cell cytoplasm containing numerous small vacuoles which appear to be derived from smooth endoplasmic reticulum. It is suggested that nurse cells may have a role in selection and transport of nutrient material for vitelline cells and that they manufacture precursors of lipid which is subsequently stored as a food reserve in mature vitelline cells. Possible transport sites between parenchymal cells and nurse cells were identified.  相似文献   

10.
The appearance and distribution of electron-opaque, lipid-containing bodies have been studied in liver of adult male mice of the C3H strain. The mice were either partially hepatectomized or sham-operated, and the liver was fixed in Veronal acetate-buffered 2 per cent osmium tetroxide at various postoperative intervals (10, 20, 40, 60, and 120 minutes). Normal, non-operated mice served as controls. As early as 10 minutes after both sham operation and partial hepatectomy, lipid-containing bodies have been observed, not only in the cytoplasm of hepatic parenchymal cells, but also in the space of Disse. At the very early postoperative intervals studied, minute lipid bodies are repeatedly found to be more numerous in the space of Disse than at later intervals. It is suggested that the lipid-containing bodies enter the parenchymal cell from the circulation. At the cell membrane, numerous invaginations, each containing a lipid body, have been observed; this suggests that the lipid bodies enter the hepatic parenchymal cells by the process of pinocytosis.The fact that only hepatic parenchymal cells contain the lipid bodies, whereas von Kupffer, endothelial lining, and Ito's fat-storing cells do not, may indicate a specific lipid mobilization response on the part of the cells of the hepatic parenchyma.  相似文献   

11.
An electron microscope study was made of the central cell and the development of the free nuclear endosperm surrounding the zygote and synergids during the first three days after pollination. The cytoplasm of the central cell, concentrated around the partially-fused polar nuclei, contains many ribosomes, mitochondria and large, dense, starch-containing plastids, some dictyosomes and lipid bodies, and long, single cisternae of rough endoplasmic reticulum (RER) that frequently terminate in whorls. Dense, core-containing microbodies are closely associated with the RER. After fertilization the cytoplasm of the 2-and 4-nucleate endosperm shows an increase in number of dictyosomes, and in amount of RER which becomes stacked in arrays of parallel cisternae. Cup-shaped plastids are associated with many long, helical polysomes. Perinuclear aggregates of dense, granular material also appear after fertilization. Granular aggregates and helical polysomes disappear after the first few divisions of the primary endosperm nucleus. During the second and third days of development there is an increase in dictyosome number and RER proliferation, and endosperm nuclei become deeply lobed. Concurrently, there is a sharp decline in the starch and lipid reserves of the central cell and elaborate transfer walls are formed at the micropylar end of the embryo sac and on the outer surface of the degenerating synergid. The transfer walls contain groups of small, membrane-bound vesicles, and are associated with large numbers of mitochondria and with the smooth endoplasmic reticulum.  相似文献   

12.
The premyoblast and differentiating mononuclear myoblasts of the metameric striated muscles of Xenopus laevis were analysed for vitellolysis and lipid body utilization. In the course of myoblast differentiation the stainability of platelets stained with safranin and fast green shows essential variations. The platelets appear to lose their affinity for safranin and subsequently begin to stain with fast green. The yolk platelets were found to contain basic proteins, non-histone proteins, and phospholipids. The lipid bodies appear in the myoblast cytoplasm at the onset of vitellolysis and they disappear after yolk reserves have been utilized. After the deutoplasmatic material has been used the myoblast nuclei begin to divide and this leads to the formation of polykaryocytes.  相似文献   

13.
Beltian bodies of Acacia cornigera have evolved as multicellular structures which serve as food for protective ant colonies. At the ultrastructural level, Beltian body cells contain a large amount of protein and lipid that presumably contribute to the ant's nutrition. The non-soluble protein is aggregated into tubules of two size classes: one is present in both the cytoplasm and nucleoplasm, and has an individual tubule diam of 75 A, while another size class, located in the cytoplasm, has a diam of 280 A. These two classes of protein tubules aggregate into units that occupy a high percentage of a cortical cell's volume. Numerous lipid droplets are present in the cytoplasm, adding an energy source to the ant's diet. Each droplet is surrounded by a single layer of filaments, the molecular composition of which is unknown at this time. This study indicates that the evolutionary development of this tissue has produced a highly desirable food source for the inhabiting ants.  相似文献   

14.
Dynamic changes in the distribution of lipid and insoluble polysaccharide reserves of Pancratium maritimum L. (Amaryllidaceae) anthers were investigated throughout the successive stages of pollen development, using cytochemical methods, to determine whether the synthesis, transformation, and mobilization of reserve materials in developing anthers follow the regular pathway in angiosperms and support the physiological activities in developing pollen. Polysaccharides and lipid reserves exhibited a variable pattern of distribution from the sporogenous cell stage to the anthesis. Starch granules and lipid bodies were scarce in the cytoplasm of sporogenous cells, but their number increased significantly at the premeiotic stage. Conversely, starch and lipid reserves of meiocytes reduced at the early prophase of the first meiotic division, and then their amount showed fluctuations during the microsporogenesis. The cytoplasm of free and vacuolated microspores was poor regarding the polysaccharide and lipid reserves. However, at the late vacuolated microspore stage, small insoluble polysaccharides began to appear in the microspore cytoplasm, and their number increased remarkably in the cytoplasm of the bicellular pollen grain. During the maturation of pollen grains, polysaccharide reserves were replaced with lipids. The starch and lipid reserves of the staminal envelope also showed variations at different stages of the anther development. The dynamic changes in the polysaccharide and lipid reserves of P. maritimum anthers were consistent with the physiological activities such as differentiation, cell division and material synthesis that occur in the anther tissue at different stages of the male gametophyte development, and supported the normal pollen development.  相似文献   

15.
A study is reported of histogenesis and organogenesis duringthe processes leading up to seedling formation in cultures ofVanilla planifolia. Prior to germination, all cells of the embryoincreased in size rupturing the seed coat and initiating theprotocorm stage. The cells of the protocorm were heavily ladenwith starch grains. Although all of the cells of the matureembryo were heavily laden with protein bodies, these were confinedto the terminal cell descendents on emergence of the embryofrom the seed coat, and they disappeared during differentiationof the meristem, indicating that some reserves were mobilizedand utilized during germination. The terminal locus of embryonal axis did not differentiate intoa cotyledon and epicotyl as in other angiosperm embryos butformed a thick meristematic layer. Bipolar differentiation withinthe meristem produced the shoot, and after a few leaves hadbeen formed, the first root differentiated endogenously fromthe base of the meristem. Subsequent roots, however, appearedto originate more superficially. The chain of events appearsto be quite unique to Vanilla amongst the angiosperms. Vanilla planifolia, protocorm, starch grains, protein bodies  相似文献   

16.
Ultrastructural observations of parenchyma cells of cotyledons of soybean (Glycine max (L.) Merr.) indicate that a 20-min period of imbibition brings about extensive changes in membranes and organelles. The plasma membrane, which in cells of dry seeds is disorganized and disrupted, becomes relatively intact and continuous. A network of endoplasmic reticulum vesicles and tubules, no evidence of which can be discerned in dry seeds, appears extensively dispersed through the cytoplasm and around the margin of protein bodies. Mitochondria in dry tissue are distorted in shape and nearly devoid of internal structure. In imbibed cells they are round or oval and are bound by an intact membrane enclosing numerous cristae and a dense stroma. Starch grains develop in proplastids. Circular or whorled membranous structures appear in the cytoplasm. The swiftness with which membranes and organelles are structurally altered during imbibition is a reflection of their effectiveness in rapidly modifying solute loss and solvent entry.  相似文献   

17.
Summary Albuminous cells were examined in seasonal collections of secondary phloem of Pinus banksiana, P. resinosa and P. strobus. It was determined that the only reliable criterion for the identification of albuminous cells is their conspicuous connections with sieve cells. Discrete bodies, which give positive protein reactions, were encountered in young albuminous cells. These bodies, which have been interpreted as slime bodies, eventually elongate in the cytoplasm and disappear. During periods of high starch content in other parenchymatous elements, albuminous cells may also contain starch.This research has been supported by National Science Foundation grant GB-3193.  相似文献   

18.
In this study, distribution of polysaccharides, lipids, and proteins in the developing anthers of Campsis radicans (L.) Seem. was examined from sporogenous cell stage to mature pollen, using cytochemical methods. To detect the distribution and dynamic changes of insoluble polysaccharides, lipid bodies, and proteins in the anthers through progressive developmental stages, semi-thin sections of anthers at different developmental stages were stained with periodic-acid-Schiff (PAS) reagent, Sudan black B, and Coomassie brilliant blue, respectively, and examined under light microscope. Ultrastructural observations with TEM were also carried out to determine the storage form of starch in the connective tissue, and storage form of lipids in the tapetal cells. In sporogenous cell stage, anther wall contains numerous insoluble polysaccharides. However, from the sporogenous cell stage to the vacuolated microspore stage, the amount of insoluble polysaccharides in the anther wall decreases gradually. At bicellular pollen stage, tapetum degenerates completely and polysaccharides are not seen in the anther wall. Lipid bodies are observed in the cytoplasm of both middle layer and tapetal cells at tetrad stage, whereas they disappear in the vacuolated microspore stage. Compared with polysaccharides, proteins are limited in the anther wall at early stages of development. During pollen development, polysaccharides, proteins, and lipid bodies are scarce in the cytoplasm of sporogenous cells, but their amount increases at premeiotic stage. From tetrad stage to bicellular pollen stage, microspore cytoplasm contains variable amount of insoluble polysaccharide grains, lipid and protein bodies. At bicellular pollen stage, plentiful amount of starch granules are stored in the cytoplasm of the pollen grains. Proteins and lipid bodies are also present in the cytoplasm.  相似文献   

19.
The immature sieve cell of Pinus strobus contains all of the protoplasmic components commonly encountered in young cell types. In addition, it contains slime bodies with distinct double-layered limiting membranes. The mature sieve cell is lined by a narrow layer of cytoplasm consisting of a plasmalemma, one or more layers of anastomosing tubules of endoplasmic reticulum, numerous mitochondria, starch granules and crystal-like bodies. Each mature cell contains a necrotic nucleus. Ribosomes and dictyosomes are lacking. Strands derived ontogenetically from the slime bodies of the immature cell traverse the central cavity and are continuous with those of neighboring sieve cells through the plasmalemma-lined pores of the sieve areas. Sieve-area pores are also traversed by numerous endoplasmic membranes. A membrane was not found separating the parietal layer of cytoplasm from the large central cavity.  相似文献   

20.
The fine structure of the parathyroid of the macaque is described, and is correlated with classical parathyroid cytology as seen in the light microscope. The two parenchymal cell types, the chief cells and the oxyphil cells, have been recognized in electron micrographs. The chief cells contain within their cytoplasm mitochondria, endoplasmic reticulum, and Golgi bodies similar to those found in other endocrine tissues as well as frequent PAS-positive granules. The juxtanuclear body of the light microscopists is identified with stacks of parallel lamellar elements of the endoplasmic reticulum of the ergastoplasmic or granular type. Oxyphil cells are characterized by juxtanuclear bodies and by numerous mitochondria found throughout their cytoplasm. Puzzling lamellar whorls are described in the cytoplasm of some oxyphil cells. The endothelium of parathyroid capillaries is extremely thin in some areas and contains numerous fenestrations as well as an extensive system of vesicles. The possible significance of these structures is discussed. The connective tissue elements found in the perivascular spaces of macaque parathyroid are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号