首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA type serve different functions during excitatory synaptic transmission. Although many central neurons bear both types of receptor, the evidence concerning the sensitivity of cerebellar Purkinje cells to NMDA is contradictory. To investigate the receptor types present in Purkinje cells, we have used whole-cell and outside-out patch-clamp methods to record from cells in thin cerebellar slices from young rats. At a holding potential of -70 mV (in nominally Mg(2+)-free medium, with added glycine) NMDA caused a whole-cell current response which consisted of a dramatic increase in the frequency of synaptic currents. In the presence of tetrodotoxin (TTX) and the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline, spontaneous synaptic currents and responses to NMDA were inhibited. In a proportion of cells a small polysynaptic response to NMDA persisted, which was further reduced by the non-NMDA receptor antagonist 6-cyano-2,3-dihydro-7-nitroquinoxalinedione (CNQX). The non-NMDA glutamate receptor agonists kainate (KA), quisqualate (QA) and s-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (s-AMPA), evoked large inward currents due to the direct activation of receptors in Purkinje cells. NMDA applied to excised membrane patches failed to evoke any single-channel currents, whereas s-AMPA and QA caused small inward currents accompanied by marked increases in current noise. Spectral analysis of the s-AMPA noise in patches gave an estimated mean channel conductance of approximately 4 pS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The new antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which blocks responses to kainate and quisqualate, has been used in conjunction with D-2-amino-5-phosphonovalerate (APV), which blocks selectively responses to N-methyl-D-aspartate (NMDA), to determine the role of excitatory amino acid receptors in synaptic transmission. An excitatory postsynaptic potential (EPSP)-inhibitory postsynaptic potential (IPSP) sequence was evoked in CA1 neurons by stimulation of the Schaffer collateral-commissural pathway in rat hippocampal slices. CNQX (10 microM) substantially reduced the EPSP without having any effect on input resistance or membrane potential. The IPSP was also reduced provided that the stimulating electrode was place approximately 1 mm from the recording electrode. The EPSP that remained in the presence of CNQX had characteristics of an NMDA receptor-mediated potential; it had a slow timecourse, summated at high frequencies, was blocked reversibly by APV, increased greatly in size in Mg2+-free medium, and showed an anomalous voltage dependence in Mg2+-containing medium. In the presence of CNQX, an APV-sensitive polysynaptic GABAergic IPSP could be evoked, indicating that NMDA receptors can mediate suprathreshold EPSPS in inhibitory interneurons. It is suggested that either NMDA or non-NMDA receptors can, under different circumstances, mediate the synaptic excitation of pyramidal neurons and inhibitory interneurons in area CA1 of the hippocampus.  相似文献   

3.
The effects of voltage-operated potassium channel blockers on evoked excitatory synaptic transmission were studied in theCA1 subfield of rat hippocampal slices. Incubation with 50 μM 4-aminopyridine (n=27), 300 nM α-dendrotoxin (n=3), or 5 to 25 mM tetraethylammonium (n=7) resulted in an enhancement of the peak amplitude of excitatory postsynaptic currents (EPSC) and significant prolongation of their decay at strong stimuli, due to an increased contribution of NMDA receptors into EPSC. In five experiments, the presence of an AMPA receptor antagonist, 4-aminopyridine, led to the appearance of NMDA receptor-mediated field excitatory postsynaptic potentials (fEPSP). It is suggested that various modulations increasing presynaptic Ca2+ entry and, consequently, glutamate release may increase an NMDA component of synaptic transmission via excitation of polysynaptic excitatory pathways and/or due to glutamate spillover to distant extrasynaptic NMDA receptors.  相似文献   

4.
J A Kauer  R C Malenka  R A Nicoll 《Neuron》1988,1(10):911-917
Long-term potentiation (LTP) is a long-lasting enhancement of synaptic transmission that can be induced by brief repetitive stimulation of excitatory pathways in the hippocampus. One of the most controversial points is whether the process underlying the enhanced synaptic transmission occurs pre- or postsynaptically. To examine this question, we have taken advantage of the novel physiological properties of excitatory synaptic transmission in the CA1 region of the hippocampus. Synaptically released glutamate activates both NMDA and non-NMDA receptors on pyramidal cells, resulting in an excitatory postsynaptic potential (EPSP) with two distinct components. A selective increase in the non-NMDA component of the EPSP was observed with LTP. This result suggests that the enhancement of synaptic transmission during LTP is caused by an increased sensitivity of the postsynaptic neuron to synaptically released glutamate.  相似文献   

5.
Cultured GABAergic cerebral cortex neurons were exposed to the excitatory amino acid (EAA) L-glutamate, kainate (KA), N-methyl-D-aspartate (NMDA), or RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolopropionate (AMPA). To ensure a constant glutamate concentration in the culture media during the exposure periods, the glutamate uptake inhibitor L-aspartic acid beta-hydroxamate was added at 500 microM to the cultures that were exposed to glutamate. Each of these EAAs was able to induce neurotoxicity. It was not possible to reduce or prevent glutamate-induced cytotoxicity by blocking only one of the glutamate receptor subtypes with either the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoate (APV) or with one of the specific non-NMDA antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). However, if the cultures were exposed simultaneously to glutamate and the antagonists in combination, i.e., APV plus CNQX or APV plus DNQX, the toxicity was completely prevented. Furthermore, CNQX and DNQX were shown to be selective blockers of cytotoxic phenomena induced by non-NMDA glutamate agonists with no effect on NMDA-induced cell death. Likewise, APV prevented NMDA-induced cell death without affecting the KA- or AMPA-induced neurotoxicity. It is concluded that EAA-dependent neurotoxicity is induced by NMDA as well as non-NMDA receptors.  相似文献   

6.
In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds—the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and theN-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.  相似文献   

7.
AMPA receptors mediate fast, glutamatergic synaptic transmission in the central nervous system. The time-course of the associated postsynaptic current has been suggested to be determined principally by the kinetics of glutamate binding and receptor desensitization. Aniracetam and cyclothiazide are drugs capable of selectively preventing desensitization of the AMPA receptor. To investigate the relevance of desensitization to fast synaptic transmission in the cerebellum we have tested these compounds against AMPA-induced depolarizations and postsynaptic potentials using the grease-gap recording technique. Aniracetam (1 M-5 mM) and cyclothiazide (1 M-500 M) both enhanced the depolarising action of AMPA (1 M) on Purkinje cells in a concentration-dependent manner. At the highest concentrations tested, the increases over controls were approximately 600% and 800% respectively. Aniracetam also increased, in a concentration-dependent manner, the amplitude of the evoked synaptic potentials of both parallel fibre-Purkinje cell and mossy fibre-granule cell pathways, with the highest concentrations tested enhancing the potentials by approximately 60% and 75% respectively. These data suggest that, at two different synapses in the cerebellum, AMPA receptor desensitization occurs physiologically and is likely to contribute to the shape of fast synaptic currents.Abbreviations CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - NMDA N-methyl-D-aspartate - AMPA -amino-3-hydroxy-5-methyl-4-isoxazole propionate - AP5 D-2-amino-5-phosphopentanoate - EPSP excitatory postsynaptic potential - EPSC excitatory postsynaptic current - DMSO dimethyl sulphoxide - NBQX 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline Special issue dedicated to Dr. Robert Balázs.  相似文献   

8.
On rat hippocampal slices using a standard patch-clamp technique in the whole-cell configuration, we studied the effects of long-term (40 to 60 min) hypoxia/hypoglycemia (HH) on excitatory postsynaptic currents (EPSC) evoked by stimulation of Schaffer collaterals in the cells of the CA1 zone. In addition to the earlier described effect of an immediate drop in the EPSC amplitude, a significant transient increase in its amplitude 30-50 min after the beginning of HH was observed. A pharmacologically isolated NMDA component of excitatory synaptic events underwent similar changes: 30-50 min after the blockade of NMDA receptor-mediated current, a fast recovery of its amplitude to the control (or even higher) values occurred. A blocker of NMDA/glutamate (Glu) receptors, D-aminophosphonovaleric acid (D-APV), and a competitive nonspecific antagonist of metabotropic Glu receptors, (RS)--methyl-4-carboxyphenylglycine – (RS)-MCPG – did not influence the HH-induced initial suppression of synaptic transmission but completely eliminated its delayed recovery. Our findings allow us to suppose that NMDA receptors, as well as metabotropic Glu receptors, play important roles in the cascade of biochemical reactions resulting in death of hippocampal pyramidal cells in the course of and after long-term ischemia in vivo.  相似文献   

9.
Liu G  Choi S  Tsien RW 《Neuron》1999,22(2):395-409
To understand the elementary unit of synaptic communication between CNS neurons, one must know what causes the variability of quantal postsynaptic currents and whether unitary packets of transmitter saturate postsynaptic receptors. We studied single excitatory synapses between hippocampal neurons in culture. Focal glutamate application at individual postsynaptic sites evoked currents (I(glu)) with little variability compared with quantal excitatory postsynaptic currents (EPSCs). The maximal I(glu) was >2-fold larger than the median EPSC. Thus, variations in [glu]cleft are the main source of variability in EPSC size, and glutamate receptors are generally far from saturation during quantal transmission. This conclusion was verified by molecular antagonism experiments in hippocampal cultures and slices. The general lack of glutamate receptor saturation leaves room for increases in [glu]cleft as a mechanism for synaptic plasticity.  相似文献   

10.
We have defined conditions whereby glutamate becomes toxic to isolated cerebellar granule neurons in a physiologic salt solution (pH 7.4). In the presence of a physiologic Mg++ concentration, acute glutamate excitotoxicity manifests only when the temperature was reduced from 37°C to 22°C. In contrast to glutamate, N-methyl-D-aspartate (NMDA) was non-toxic at either temperature at concentrations as high as 1 mM. Glycine strongly potentiated both the potency and efficacy of glutamate but revealed only a modest NMDA response. The non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxalinedione (CNQX), potently protected against glutamate challenge, although the contribution of antagonism at strychnine-insensitive glycine sites could not be excluded. To further characterize the non-NMDA receptor contribution to the excitotoxic response, the promiscuity of glutamate interaction with ionotropic receptors was simulated by exposing neurons to NMDA in the presence of non-NMDA receptor agonists. NMDA toxicity was potentiated four- to sevenfold when non-NMDA receptors were coactivated by a subtoxic concentration of AMPA, kainate, or domoate. These results suggest that non-NMDA receptor activation participates in the mechanism of acute glutamate toxicity by producing neuronal depolarization (via sodium influx), which in turn promotes the release of the voltage-dependent magnesium blockade of NMDA receptor ion channels. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
S Hestrin  P Sah  R A Nicoll 《Neuron》1990,5(3):247-253
We studied with the whole-cell recording techniques, the mechanisms underlying the time course of the slow N-methyl-D-aspartate (NMDA), and fast non-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in hippocampal slices. The rising phase of the NMDA receptor-mediated component of the EPSC as well as the decaying phase of the NMDA and non-NMDA component were highly temperature-sensitive, suggesting that neither of these processes is determined by free diffusion of transmitter. Moreover, glutamate uptake blockers enhanced the responses to exogenously applied glutamate, but had no effect on the decay of either the NMDA or non-NMDA components of the EPSCs. On the other hand, open channel blockers known to modify NMDA channel kinetics reduced the EPSC decay time. Thus, the present results support a model in which the rise time and decay of the NMDA component are determined primarily by slow channel kinetics and the decay of the non-NMDA component is due either to channel kinetics or to desensitization.  相似文献   

12.
N-methyl-D-aspartate (NMDA) receptors are associated with many forms of synaptic plasticity. Their expression level and subunit composition undergo developmental changes in several brain regions. In the mouse cerebellum, beside a developmental switch between NR2B and NR2A/C subunits in granule cells, functional postsynaptic NMDA receptors are seen in Purkinje cells of neonate and adult but not juvenile rat and mice. A presynaptic effect of NMDA on GABA release by cerebellar interneurons was identified recently. Nevertheless whereas NMDA receptor subunits are detected on parallel fiber terminals, a presynaptic effect of NMDA on spontaneous release of glutamate has not been demonstrated. Using mouse cerebellar cultures and patch-clamp recordings we show that NMDA facilitates glutamate release onto Purkinje cells in young cultures via a presynaptic mechanism, whereas NMDA activates extrasynaptic receptors in Purkinje cells recorded in old cultures. The presynaptic effect of NMDA on glutamate release is also observed in Purkinje cells recorded in acute slices prepared from juvenile but not from adult mice and requires a specific protocol of NMDA application.  相似文献   

13.
Cultures of rat hippocampal pyramidal neurons were used to examine the roles of excitatory synaptic transmission, NMDA receptors, and elevated [Ca2+]i in the production of excitotoxicity. In integral of 70% of the cells observed, perfusion with Mg2(+)-free, glycine-supplemented medium induced large spontaneous fluctuations or maintained plateaus of [Ca2+]i. [Ca2+]i fluctuations could be blocked by tetrodotoxin, NMDA receptor antagonists, dihydropyridines, or compounds that inhibit synaptic transmission in the hippocampus, but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When cells were treated with Mg2(+)-free, glycine-supplemented medium and examined 24 hr later, integral of 30% of the neurons were found to have died. Cell death could be inhibited by the same agents that reduced [Ca2+]i fluctuations. These results support a role for direct excitatory synaptic transmission, as opposed to the general release of glutamate, in excitotoxicity. A major role for synaptically activated NMDA receptors, rather than kainate/quisqualate receptors, is also indicated. Neuronal death may be produced by abnormal changes in neuronal [Ca2+]i.  相似文献   

14.
Ten pairs of protrusions, called accessory lobes (ALs), exist at the lateral sides of avian lumbosacral spinal cords. Histological and behavioral evidence suggests that neurons are present in ALs and the AL acts as a sensory organ of equilibrium during walking. Neurons in the outer layer of the AL consistently show glutamate-like immunoreactivity and neurons in the central region of the AL show glutamate receptor-like immunoreactivity. However, it is unknown how glutamate acts on the functional activity of AL neurons. In this study, we examined the effects of glutamate on the electrical activities of AL neurons using the patch clamp technique. There are two types of neurons among isolated AL neurons: spontaneously firing and silent neurons. Among silent neurons, 42 % of neurons responded to glutamate and generated repetitive firing. Kainate and glutamate in combination with the NMDA receptor antagonist, MK-801, also induced firing and evoked an inward current. On the other hand, the application of AMPA, NMDA or glutamate in combination with the non-NMDA receptor antagonist, CNQX, did not. These results indicate that chick AL neurons express functional kainate receptors to respond to glutamate and suggest that the glutamatergic transmission plays a role in excitatory regulation of AL neurons of the chick.  相似文献   

15.
The wide-ranging neuronal actions of glutamate are thought to be mediated by postsynaptic N-methyl-D-aspartate (NMDA) and non-NMDA receptors. The present report demonstrates the existence of presynaptic glutamate receptors in isolated striatal dopaminergic nerve terminals (synaptosomes). Activation of these receptors, by NMDA in the absence of Mg2+ and presence of glycine and by non-NMDA agonists in the presence of Mg2+, results in Ca(2+)-dependent release of dopamine from striatal synaptosomes. The release stimulated by NMDA is blocked by Mg2+ and by selective NMDA antagonists, whereas the release stimulated by selective non-NMDA agonists is blocked by a non-NMDA antagonist but not by Mg2+ or NMDA antagonists. Thus, these presynaptic glutamate receptors, localized on dopaminergic terminals in the striatum, appear to be pharmacologically similar to both the NMDA and the non-NMDA postsynaptic receptors. By modulating the release of dopamine, these presynaptic receptors may play an important role in transmitter interactions in the striatum.  相似文献   

16.
Young A  Sun QQ 《Chemical senses》2007,32(8):783-794
Afferent olfactory information, in vivo and in vitro, can be rapidly adapted to through a metabotropic glutamate receptor (mGluR)-mediated attenuation of synaptic strength. Specific cellular and synaptic mechanisms underlying olfactory learning and habituation at the cortical level remain unclear. Through whole-cell recording, excitatory postsynaptic currents (EPSCs) were obtained from piriform cortex (PC) principal cells. Using a coincidental, pre- and postsynaptic stimulation protocol, long-term depression (LTD) in synaptic strength was induced at associative, excitatory synapses onto layer II pyramidal neurons of the mouse (P15-27) PC. LTD was mimicked and occluded by mGluR agonists and blocked by nonselective mGluR antagonist (RS)-alpha-methyl-4-sulfonophenylglycine (MSPG) but not by N-methyl-D-aspartic acid (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Analysis of the paired-pulse ratio, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA current ratio, and spontaneous EPSCs indicate that electrically induced LTD was mediated predominantly by postsynaptic mechanisms. Additionally, presynaptic mGluRs were involved in agonist-mediated synaptic depression. Immunohistochemical analysis supports the presence of multiple subclasses of mGluRs throughout the PC, with large concentrations of several receptors present in layer II. These observations provide further evidence of activity-dependent, long-term modification of associative inputs and its underlying mechanisms. Cortical adaptation at associative synapses provides an additional link between cortical olfactory processing and subcortical centers that influence behavior.  相似文献   

17.
Jin Y  Kim SJ  Kim J  Worley PF  Linden DJ 《Neuron》2007,55(2):277-287
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.  相似文献   

18.
The vertebrate retina is a “genuine neural center” (Ramón y Cajal), in which glutamate is a major excitatory neurotransmitter. Both N-methyl-d-aspartate (NMDA) and non-NMDA receptors are expressed in the retina. Although non-NMDA receptors and/or metabotropic glutamate receptors are generally thought to be responsible for mediating the transfer of visual signals in the outer retina, there is recent evidence suggesting that NMDA receptors are also expressed in photoreceptors, as well as horizontal and bipolar cells. In the inner retina, NMDA receptors, in addition to other glutamate receptor subtypes, are abundantly expressed to mediate visual signal transmission from bipolar cells to amacrine and ganglion cells, and could be involved in modulation of inhibitory feedback from amacrine cells to bipolar cells. NMDA receptors are extrasynaptically expressed in ganglion cells (and probably amacrine cells) and may play physiological roles in a special mode. Activity of NMDA receptors may be modulated by neuromodulators, such as d-serine and others. This article discusses retinal excitotoxicity mediated by NMDA receptors.  相似文献   

19.
Effect of hypoxia/aglycemia episodes on excitatory postsynaptic currents (EPSC) evoked in pyramidal neurons of the rat hippocampalCA1 area by electrical stimulation of Schaffer collaterals was studied using voltage-clamp and intracellular perfusion techniques. By 60–80 min after a 10-min-long hypoxia/aglycemia episode, the EPSC amplitude increased and the EPSC decay was considerably slowed down, if compared with control. In contrast to control conditions, under which EPSC decay kinetics did not depend on the stimulus strength, hypoxia/aglycemia was followed by slowing down of the EPSC decay when stimulus intensity increased. The stimulus-dependent posthypoxic “slow” EPSC component was depressed both by D-(−)-2-amino-5-phosphonovaleric acid, an NMDA receptor blocker, and by 6-cyano-7-nitroquinoline-2,3-dion, a non-NMDA receptor blocker, which suggested possible polysynaptic origin of the above EPSC component. We suggest that short-term hypoxia/aglycemia transforms into an active state the NMDA receptors in the synapses of excitatory reccurrent collaterals of theCA1 hippocampal area, which had not functioned before. An increase in the intracellular calcium concentration from 1.5 to 5.0 mM resulted in the effect similar to that produced by hypoxia/aglycemia, which suggests that calcium channels play an important role in the mechanisms responsible for hypoxia-related activation of “silent” NMDA receptors.  相似文献   

20.
Newpher TM  Ehlers MD 《Neuron》2008,58(4):472-497
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号