首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

2.
1. Spatiotemporal patterns of canopy true bug diversity in forests of different tree species diversity have not yet been disentangled, although plant diversity has been shown to strongly impact the diversity and distribution of many insect communities. 2. Here we compare species richness of canopy true bugs across a tree diversity gradient ranging from simple beech to mixed forest stands. We analyse changes in community composition by additive partitioning of species diversity, for communities on various tree species, as well as for communities dwelling on beech alone. 3. Total species richness (γ‐diversity) and α‐diversity, and abundance of true bugs increased across the tree diversity gradient, while diversity changes were mediated by increased true bug abundance in the highly diverse forest stands. The same pattern was found for γ‐diversity in most functional guilds (e.g. forest specialists, herbivores, predators). Temporal and even more, spatial turnover (β‐diversity) among trees was closely related to tree diversity and accounted for ~90% of total γ‐diversity. 4. Results for beech alone were similar, but species turnover could not be related to the tree diversity gradient, and monthly turnover was higher compared to turnover among trees. 5. Our findings support the hypothesis that with increasing tree diversity and thereby increasing habitat heterogeneity, enhanced resource availability supports a greater number of individuals and species of true bugs. Tree species identity and the dissimilarity of true bug communities from tree to tree determine community patterns. 6. In conclusion, understanding diversity and distribution of insect communities in deciduous forests needs a perspective on patterns of spatiotemporal turnover. Heterogeneity among sites, tree species, as well as tree individuals contributed greatly to overall bug diversity.  相似文献   

3.

Questions

Do vascular plant species richness and beta‐diversity differ between managed and structurally complex unmanaged stands? To what extent do species richness and beta‐diversity relate to forest structural attributes and heterogeneity?

Location

Five national parks in central and southern Italy.

Methods

We sampled vascular plant species composition and forest structural attributes in eight unmanaged temperate mesic forest stands dominated or co‐dominated by beech, and in eight comparison stands managed as high forests with similar environmental features. We compared plant species richness, composition and beta‐diversity across pairs of stands (unmanaged vs managed) using GLMM s. Beta‐diversity was quantified both at the scale of each pair of stands using plot‐to‐plot dissimilarity matrices (species turnover), and across the whole data set, considering the distance in the multivariate species space of individual plots from their centroid within the same stand (compositional heterogeneity). We modelled the relationship between species diversity (richness and beta‐diversity) and forest structural heterogeneity and individual structural variables using GLMM s and multiple regression on distance matrices.

Results

Species composition differed significantly between managed and unmanaged stands, but not richness and beta‐diversity. We found weak evidence that plant species richness increased with increasing levels of structural heterogeneity and canopy diversification. At the scale of individual stands, species turnover was explained by different variables in distinct stands, with variables related to deadwood quantity and quality being selected most often. We did not find support for the hypothesis that compositional heterogeneity varies as a function of forest structural characteristics at the scale of the whole data set.

Conclusions

Structurally complex unmanaged stands have a distinct herb layer species composition from that of mature stands in similar environmental conditions. Nevertheless, we did not find significantly higher levels of vascular plant species richness and beta‐diversity in unmanaged stands. Beta‐diversity was related to patterns of deadwood accumulation, while for species richness the evidence that it increases with increasing levels of canopy diversification was weak. These results suggest that emulating natural disturbance, and favouring deadwood accumulation and canopy diversification may benefit some, but not all, facets of plant species diversity in Apennine beech forests.
  相似文献   

4.
Modern forestry has created stands with even age distribution of trees and fragmentation of the habitat. In boreal forests, the effects on biodiversity within many taxa need to be examined. We tested the hypothesis that species richness of foliose and fruticose lichens and spiders is positively related in the lower canopy of spruce (Picea abies) in forests with, or without, management in central Sweden. High species richness of lichens may increase the structural complexity of the microhabitat on spruce branches, and bring a higher species richness also in the spider community. In six areas, spruce branches were sampled in old-growth and managed boreal forest stands, respectively. Forest management did not affect the species richness of spiders or lichens, but an effect due to sampling area was found in the latter taxon. There was a significant covariation between species richness of lichens and spiders, and the hypothesised positive correlation was confirmed by separate analyses for each area and combining the probabilities. Moreover, regression analysis on mean values from each site revealed a positive relationship. We conclude that species richness of lichens and spiders covary on spruce branches for functional reasons, i.e. more lichen species promotes a more diverse spider community by increasing the structural heterogeneity. Our results might provide a shortcut for assessing biodiversity in boreal forests.  相似文献   

5.
This study applies a novel, vertically stratified fogging protocol to document arthropod abundance, density, and biomass across a vertical gradient in a primary, lowland dipterocarp forest canopy in Borneo. We fogged arthropods at 5 m vertical intervals and 20 m horizontal intervals along six full‐canopy transects and measured leaf surface areas along the same transects. The results show that arthropod biomass in the aboveground regions was 23.6 kg/ha, the abundance was 23.9 million individuals/ha, and the density on leaf surfaces was 280 individuals/m2 leaf area. All three numbers are five to ten times higher than estimated by previous surveys of tropical lowland rain forest canopies using mass‐collection techniques. Arthropod abundance and biomass were analyzed in relation to canopy structure, composition, vapor pressure deficit (VPD), photosynthetic photon flux density (PPFD), and height. Using stepwise regression we found that 13 of 14 arthropod groups had significant positive relationships with one‐sided leaf area, 11 had significant negative relationships with VPD, 3 had significant relationships with height, and none showed positive relationships with light. Classifying the 14 taxa based on their responses to leaf area and VPD created three groups that corresponded roughly to the biology of these taxa. This study suggests that the biomass and abundance, and perhaps therefore—by extrapolation—the biodiversity, of tropical canopy arthropods may be very much higher than previously estimated.  相似文献   

6.
Aim: Recent coarse‐scale studies have shown positive relationships between the biodiversity of plants/vertebrates and the human population. Little is known about the generality of the pattern for invertebrates. Moreover, biodiversity and human population might correlate because they both covary with other factors such as energy availability and habitat heterogeneity. Here we test these two non‐mutually exclusive mechanisms with ant species‐richness data from the Fauna Europaea. Location Forty‐three European countries/regions. Methods We derived mixed models of total, native and exotic ant species richness as a function of human population size/density, controlling for country area, plant species richness (as a proxy for habitat heterogeneity), and mean annual temperature and precipitation (variables related to energy availability). Results Ant species richness increased significantly with increasing human population. This result was confirmed when controlling for variations in country area. Both for human population size/density and for ant species richness, there were positive correlations with temperature but not with precipitation. This finding is in agreement with the energy‐availability hypothesis. However, we observed a negative latitudinal gradient in ant and plant species richness, although not in human population size/density. Plant species richness was positively correlated with ant species richness but not with human population size/density. Thus, there is evidence that this type of habitat heterogeneity can play a role in the observed latitudinal gradient of ant species richness, but not in the positive correlation between ant species richness and human population. The results were confirmed for the 545 native and the 32 exotic ant species reported, and we observed a good correlation between exotic and native ant species richness. Main conclusions Ant species richness in European countries conforms to six macroecological patterns: (1) a negative latitudinal gradient; and a positive (2) species–energy relationship, (3) species–area relationship, (4) correlation with plant species richness, (5) exotic–native species richness correlation, and (6) species–people correlation. There is some evidence for the energy‐availability hypothesis, but little evidence for habitat heterogeneity as an explanation of the large‐scale human population–ant biodiversity correlation. This correlation has implications for the conservation of ant diversity in Europe.  相似文献   

7.
ABSTRACT To clarify the underlying causes of the species‐area relationship in marsh‐nesting birds, I studied eight freshwater tidal marshes of the Connecticut River that differed in area, degree of isolation, mudflat cover, water cover, tidal regime, and extent of individual plant communities. I measured these habitat variables on aerial infrared photos, and surveyed bird populations by mapping the distribution of all birds in marshes under 5 ha in area and establishing 50‐m radius plots in marshes over 5 ha. From surveys, I determined species richness, population densities, and total populations. Analysis revealed a positive relationship between species richness and area, but no correlation between area and habitat heterogeneity. Other habitat variables were poor predictors of species richness. The lack of a relationship between habitat and species richness appeared to be a consequence of most vegetation types present not being sufficiently distinct for birds to differentially associate with them. I also found no relationship between bird population density and area, suggesting that habitat quality in marshes did not improve with increasing size, and species evenness declined with increasing richness because greater richness was associated with the presence of more rare species. Larger marshes had more rare species, species with larger populations, and species with a minimum threshold area for occurrence. Thus, my results are consistent with theoretical predictions that larger populations are less prone to local extinction and, as individuals are added to a community, more rare species are present.  相似文献   

8.
This study tested the hypothesis that habitat structure dictates the distribution and community composition of arboreal arthropods. A diverse arthropod assemblage of Douglas-fir canopies, which included Araneae, Psocoptera, Collembola and Homoptera, was chosen as a model system. Habitat structural diversity, defined as needle density and branching complexity of Douglas-fir branches, was manipulated in a four-month experiment by needle removal, thinning and tying of branches. Abundance of canopy spiders declined significantly following needle density reduction and branch thinning, branch tying significantly increased spider abundance. Distinct habitat utilization patterns were found among individual spider guilds. Orb weavers (Araneidae) dominated spider assemblages in structurally simple habitats, whereas tied branches were colonized primarily by sheet-web weavers (Linyphiidae) and nocturnal hunting spiders (Anyphaenidae and Clubionidae). Spider species richness and average body size of several spider species increased in structurally more complex habitats. Arboreal spiders appeared to be limited by strong bottom-up effects in the form of habitat quality and, to a lesser degree, prey availability. Habitat manipulations did not affect densities or biomass of flying arthropod colonists in the branch vicinity. Needle removal and branch thinning led to a significant decline in the abundance of Psocoptera and Collembola. Tying of branches resulted in an eight-fold increase in Collembola numbers, organisms most sensitive to habitat alterations. Canopy habitat structure modified vertical dispersal of Collembola from forest litter, which may have significant implications for arboreal consumers. Our results lend strong support to the importance of habitat structural diversity in explaining general patterns of arthropod abundance and diversity on plants.  相似文献   

9.
《PloS one》2015,10(12)
Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.  相似文献   

10.
Habitat fragmentation accompanies habitat loss, and drives additional biodiversity change; but few global biodiversity models explicitly analyse the effects of both fragmentation and loss. Here we propose and test the hypothesis that, as fragment area increases, species density (the number of species in a standardised plot) will scale with an exponent given by the difference between the exponents of the species–area relationships for islands (z ~ 0.25) and in contiguous habitat (z ~ 0.15), and test whether scaling varies between land uses. We also investigate the scaling of overall abundance and rarefaction‐based richness, as some mechanisms make different predictions about how fragment area should affect them. The relevant data from the taxonomically and geographically broad PREDICTS database were used to model the three diversity measures, testing their scaling with fragment area and whether the scaling exponent varied among land uses (primary forest, secondary forest, plantation forest, cropland and pasture). In addition, the consistency of the response of species density to fragment area was tested across three well represented taxa (Magnoliopsida, Hymenoptera and ‘herptiles’). Species density and total abundance showed area‐scaling exponents of 0.07 and 0.16, respectively, and these exponents did not vary significantly among land uses; rarefaction‐based richness by contrast did not increase consistently with area. These results suggest that the area‐scaling of species density is driven by the area‐scaling of total abundance, with additive edge effects (species moving into the small fragments from the surroundings) opposing – but not fully overcoming – the effect of fragment area on overall density of individuals. The interaction between fragment area and higher taxon (plants, vertebrates and invertebrates), which remained in the rarefied richness model, indicates that mechanisms may vary among groups.  相似文献   

11.
Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large‐scale determinants of species richness in a fragmented agro‐ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro‐ecosystem in the Southern Judea Lowland, Israel, within a desert–Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225 m2). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale‐dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale‐dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi‐factorial approach and multi‐scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.  相似文献   

12.
Tropical forests accommodate rich species diversity, particularly among insects. Habitat heterogeneity along the vertical gradient extending from the forest understorey to the tree canopy influences diversity. The vertical distribution of forest insects is poorly understood across Africa, most especially eastern Africa. Food‐baited traps were used to study the vertical stratification of adult fruit‐feeding nymphalid butterflies in Mtai Forest Reserve, north‐eastern Tanzania. Traps were located in the forest canopy and understorey. A total of 277 individuals of 24 species were captured. Species composition differed by trap locations: 33% of the species captured were found in both the canopy and understorey strata; however, significantly more species were captured in the understorey (54%) than canopy (13%). Males were significantly more abundant than females and captured in both strata. A greater proportion of females were captured in the understorey than the canopy. The time of day affected capture rates, with more individuals caught in the afternoon; however, there was no association between the time period and the sex of individuals captured in canopy versus understorey locations. Understanding how the sexes of butterflies vary in understorey versus canopy offers new biological insights into the vertical stratification of insects.  相似文献   

13.
Compensatory dynamics, overyielding and statistical averaging are mechanisms promoting the temporal stability of natural communities. Using the model of European intertidal rocky shore assemblages and collating 17 datasets, we investigated how the strength of these stability‐enhancing mechanisms varies with latitude and how it can be altered by the loss of habitat‐formers (e.g. canopy‐forming macroalgae). Community stability decreased with increasing latitude, mostly as a consequence of a greater synchronization of species fluctuations. Statistical averaging and overyielding (i.e. richness effect) promoted stability, but their strength did not vary with latitude. An experimental removal of macroalgal canopies caused a strengthening of the statistical averaging effect that was consistent across the latitudinal gradient investigated. Nonetheless, the loss of canopies depressed stability by enhancing the synchronization of species fluctuations on southernmost shores, while it had weak effects on shores at higher latitudes. Variation in life‐history traits among canopy‐forming species and/or in prevailing environmental conditions across a gradient of latitude could underlie variable effects of habitat‐formers on species fluctuations. Our study shows 1) that the stability of intertidal assemblages and strength of compensatory dynamics varies with latitude, 2) that canopy‐forming macroalgae, exerting a strong control on understorey species, can influence the strength of compensatory dynamics and 3) that biological forcing (i.e. facilitation) can be as important as environmental forcing in enhancing the synchronization of species fluctuations.  相似文献   

14.
Aim Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine‐scale heterogeneity in ground‐dwelling beetle assemblages under co‐occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location Critically endangered grassy woodland near Canberra, south‐eastern Australia. Methods We used pitfall traps and Tullgren funnels to sample ground‐dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions Our study shows that heterogeneity in litter habitat under co‐occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine‐scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co‐occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales.  相似文献   

15.
16.
Aim There is increasing concern regarding sustainable management and restoration of planted forests, particularly in the Mediterranean Basin where pine species have been widely used. The aim of this study was to analyse the environmental and structural characteristics of Mediterranean planted pine forests in relation to natural pine forests. Specifically, we assessed recruitment and woody species richness along climatic, structural and perturbation gradients to aid in developing restoration guidelines. Location Continental Spain. Methods We conducted a multivariate comparison of ecological characteristics in planted and natural stands of main Iberian native pine species (Pinus halepensis, Pinus pinea, Pinus pinaster, Pinus nigra and Pinus sylvestris). We fitted species‐specific statistical models of recruitment and woody species richness and analysed the response of natural and planted stands along ecological gradients. Results Planted pine forests occurred on average on poorer soils and experienced higher anthropic disturbance rates (fire frequency and anthropic mortality) than natural pine forests. Planted pine forests had lower regeneration and diversity levels than natural pine forests, and these differences were more pronounced in mountain pine stands. The largest differences in recruitment – chiefly oak seedling abundance – and species richness between planted and natural stands occurred at low‐medium values of annual precipitation, stand tree density, distance to Quercus forests and fire frequency, whereas differences usually disappeared in the upper part of the gradients. Main conclusions Structural characteristics and patterns of recruitment and species richness differ in pine planted forests compared to natural pine ecosystems in the Mediterranean, especially for mountain pines. However, management options exist that would reduce differences between these forest types, where restoration towards more natural conditions is feasible. To increase recruitment and diversity, vertical and horizontal heterogeneity could be promoted by thinning in high‐density and homogeneous stands, while enrichment planting would be desirable in mesic and medium‐density planted forests.  相似文献   

17.
1. Effects of climate change, such as higher average temperatures and earlier snowmelt, are already apparent, especially in alpine regions. However, community responses of functionally important arthropod taxa to changing climatic conditions are mostly unknown. 2. In this study, an earlier snowmelt was simulated at 15 plots along an elevational gradient in the German Alps. At each study site, soil emergence traps were established for sampling soil‐hibernating arthropods on earlier and control snowmelt treatments during the growing season. The abundance and emergence phenology of the five most common arthropod orders (Araneae, Coleoptera, Diptera, Hemiptera, Hymenoptera) were analysed, as well as the species richness of Coleoptera. 3. There was increasing abundance and species richness of Coleoptera along the elevational gradient, indicating that at higher altitudes more individuals and species hibernate in the soil. Abundances of Diptera also increased with elevation. By contrast, abundances of Hemiptera declined with increasing elevation, while abundances of Araneae and Hymenoptera did not show significant elevational patterns. Arthropods at higher elevations emerged, on average, 5 weeks later than arthropods at lower elevations, because of a longer‐lasting snow cover. The earlier snowmelt treatment resulted in higher abundances of Araneae and Hymenoptera compared with the control plots, indicating that the time of snowmelt influenced the abundance of predators, such as spiders or parasitic wasps, more than that of herbivores. 4. An earlier emergence of certain arthropod guilds and a change in relative abundance of guilds might desynchronise species interactions, leading to a possible loss of biodiversity.  相似文献   

18.
Aim Understanding complex ecological phenomena, such as the determinants of species richness, is best achieved by investigating their properties at different spatial scales. Factors significantly affecting the number of species occurring at one scale may not impact on richness at other scales. While this scale dependence has become increasingly recognized, there still remains a need to elucidate exactly how richness is structured across scales, and which mechanisms are influential for determining this important community property. This study explores how woody plant species richness varies in a fragmented system at multiple scales, and which factors are primarily responsible for these patterns. Location The study area is located in the Sonoran Desert within the bounds of metropolitan Phoenix, Arizona, which is the locus of the Central Arizona–Phoenix Long‐Term Ecological Research (CAP‐LTER) site. Methods Estimates of local and fragment plant species richness were generated from field data collected from 22 sites. Independent variables describing fragment sites were also calculated, including area, habitat heterogeneity, density of individuals, mean elevation, and extent of isolation. Structural equation modelling, multiple regression, and analysis of covariance were used to assess the contribution of independent variables to richness at the fragment and local scales. Results Fragment species richness was significantly influenced by area, though not isolation, habitat heterogeneity, mean elevation, or density of individuals. Local richness was not significantly related to fragment area, but was positively related to fragment richness, plant density, and elevation. Main conclusions The fragment species–area effect resulted from larger remnants supporting higher numbers of individuals at comparable densities, increasing richness through either passive sampling of progressively less common species and/or lower extinction rates among larger populations. Without using multi‐temporal data it is not possible to disentangle these mechanisms. We found that patterns evident at one scale are not necessarily apparent at other scales, as elevation and density of individuals significantly affected richness at the local scale but not at the fragment scale. These results lend support to the concept that mechanisms influencing the species richness of natural communities may be operable only within certain domains and that relevant scales should be specified.  相似文献   

19.
Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8100 amphibian hosts with an outdoor experiment that tested theory developed for free‐living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e. host) heterogeneity, with secondary contributions from parasite colonisation and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonisation and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species–area curves: while host richness quickly saturated, parasite richness continued to increase with neighbourhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi‐scale disease research.  相似文献   

20.
The recognition of multi‐causality and spatial non‐stationarity in the determinants of large‐scale biodiversity patterns requires to consider the role of multiple mechanisms, their interactions, and how these mechanisms vary in strength relative to each other across geographical space. Here, we challenge the view that historical climate stability primarily drives European patterns of groundwater crustacean diversity by testing also the role of spatial heterogeneity and productive energy. First, we predicted that the three mechanisms would be equally important at continental scale when analyzed separately, but that the importance of historical climate variability would weaken in joint analyses due to co‐variation with the two other mechanisms. Second, we predicted that the three mechanisms would exhibit predictable latitudinal changes in their relative strength. To test these predictions, we selected predictors representing each mechanism and analyzed separately and jointly their effects and interactions using global regression models. We further mapped the independent and overlapping effects of mechanisms across Europe using partial geographically weighted regressions. When analyzed separately, the three mechanisms explained the same amount of variation in species richness, but in the joint analysis, the influence of historical climate stability became hidden in the variation shared with the other mechanisms. Topographic heterogeneity interacted synergistically with actual evapotranspiration and habitat heterogeneity on species richness. Spatial non‐stationarity in the independent and overlapping effects of the three mechanisms was the most plausible explanation for the hump‐shaped latitudinal pattern of crustacean species richness. Productive energy and spatial heterogeneity were important predictors at mid and southern latitudes, whereas historical climate stability overlapped with the two other mechanisms in northern Europe and productive energy in southern Europe. Multi‐causality and spatial non‐stationarity provide a broader perspective of groundwater biodiversity determinants that revives the importance of spatial heterogeneity and the strong dependence of subterranean communities on food supply from the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号