首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chloroplast DNA sequencing and genomic in situ hybridization(GISH) were used to investigate the genomic origin and organizationof the alpine grass Poa jemtlandica. Using genomic probes ofP. alpina and P. flexuosa, GISH clearly distinguished betweenthese two putative parental genomes and thus confirmed the hybridnature of P. jemtlandica. The chloroplast trn L intron and trnL–trn F intergenic spacer (IGS) sequence genotypes ofP. flexuosa and P. jemtlandica were 100% identical but differedfrom those of P. alpina by a total of ten or 11 nucleotide substitutionsand six indels over 866 aligned positions, identifying P. flexuosaas the maternal parent of the P. jemtlandica population studiedhere and supporting a relatively recent origin of the hybrid.GISH revealed the presence of intergenomic translocations inthe hybrid genome, indicating that the two parental genomeshave undergone some rearrangements following hybridization.It is likely that some of these chromosome changes took placesoon after hybridization in order to overcome the adverse interactionsbetween the nuclear and the cytoplasmic genomes and to facilitatethe successful establishment of the newly formed hybrid. Thepresence of intergenomic chromosome changes may play an importantrole in the evolution of natural hybrids and the establishmentof new evolutionary lineages. Copyright 2000 Annals of BotanyCompany Natural hybridization, genome origin, intergenomic translocations, GISH, chloroplast DNA sequences, Poa jemtlandica  相似文献   

2.

Background and Aims

Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids.

Methods

Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids.

Key Results

In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type.

Conclusions

The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a result, A-clade allopolyploid Lepidium species share the Californian chloroplast type and the African ITS-type with the C-clade Australian/NZ polyploid and African diploid species, respectively.Key words: Lepidium, Brassicaceae, FISH, GISH, hybridization, polyploidy, long-distance dispersal, ITS, rDNA, Australia, New Zealand  相似文献   

3.
Giemsa C-banding and genomic in situ hybridization (GISH) wereused to identify parental genomes in hybrids of Clivia(Amaryllidaceae).Of the three groups reputed to be hybrids, onlyC. cyrtanthiflorawas shown to be of hybrid origin. The ‘German hybrids’and ‘Belgian hybrids’ were both shown to be karyotypicallyand genomically similar to C. miniata, and are either selectionsor intraspecific hybrids of that species. Successful genomedifferentiation in F1hybrids by GISH required high stringencyand high ratios of blocking DNA to probe. The spatial dispositionof different genomes with C-band or GISH markers in the hybridswas investigated in two dimensions on the spread. In five artificiallyproduced hybrids, either C-banding or GISH was used to locatethe position of parental genomes in mitotic metaphase cells.In all cases there was a significant tendency for centromeresof the different parental genomes to occupy two distinct concentricdomains on the metaphase plate. The presence or absence of centromericheterochromatin was not correlated with genome disposition.Results show that chromosome analyses can be a useful way ofidentifying Clivia hybrids in their vegetative phase. Copyright2001 Annals of Botany Company Clivia, genomic in situ hybridization, cultivar origin, parental genome separation  相似文献   

4.
The origin of the two common cultivars of Crocus, C. 'Stellaris'(2n = 2x = 10) and C. 'Golden Yellow' (2n = 3x = 14) was investigatedby fluorescent in situ hybridization using both total genomicDNA and cloned DNA sequences as probes. The clear differentiationbetween the chromosomes after genomic in situ hybridizationsupports the proposals of a hybrid origin of the cultivars andshows that they have the same parental genomes originating fromC. flavus (2n = 8) and C. angustifolius (2n = 12). C. 'Stellaris'has four chromosomes of C. flavus origin and six chromosomesof C. angustifolius origin. C. 'Golden Yellow' has eight chromosomesof C. flavus origin and six chromosomes of C. angustifoliusorigin. The number and location of 18S-5·8S-26S rRNAgenes on the chromosomes of the hybrids and of the parentalspecies agree with the results from the genomic probings. Hybridizationto Southern membranes also supports the hybrid origin of C.'Golden Yellow'.Copyright 1995, 1999 Academic Press Taxonomy, cytology, rDNA sites, in situ hybridization, Southern hybridization, Crocus  相似文献   

5.
Molecular cytogenetic analyses using fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were carried out to elucidate inter-specific relationships among wild Lilium species distributed in Korea. FISH revealed four to eight 45S rRNA gene loci, which are located on chromosomes 1–7, 10, and 11 among the different species. In contrast, the 5S rRNA gene locus was conserved on the long arm of chromosome 3, occasionally with two adjacent sites on the same chromosome arm in a few species. The 5S rDNA site was located adjacent to the 45S rDNA site in only three species, Lilium distichum, Lilium hansonii, and Lilium tsingtauense. GISH analysis using genomic DNA probes detected strong hybridization of genomes between diploid and triploid Lilium lancifolium species, demonstrating that triploid plants were derived from diploid L. lancifolium and not from Lilium maximowiczii. Phylogenetic analysis of the ITS and NTS sequences supported the cytogenetic data as well as Comber’s classification of the genus Lilium.  相似文献   

6.
In situ hybridization of total genomic DNA was used to analyselines derived from an amphiploid between tetraploid wheat,Triticumdurum Desf. (2n =4x =28), and the wheatgrassesThinopyrum distichum(Thunb.) A. Löve (2n =4x =28) andLophopyrum elongatum (Host)A. Löve (2n =2x =14). A range of chromosome numbers wasdetected, arising from loss or gain of chromosomes. Total genomicDNA probes fromThinopyrum species,L. elongatum andTriticum monococcumL. were able to discriminate chromosomes from the A and B genomesof tetraploid wheat and those of wheatgrass-origin. The methoddid not discriminate the two wheatgrass genomes, J and E, indicatingtheir close similarity. Chromosomal aberrations—includingtelocentric and ring chromosomes—were frequent. Distalinter-genomic translocations of parts of A and B genome chromosomearms, unusual in wheat itself, were more frequent than translocationsbetweenT. durum and wheatgrass.In situ hybridization of an rDNAprobe most frequently revealed four sites associated with secondaryconstrictions onT. durum chromosomes and four onTh. distichumorL. elongatum chromosomes, although there was variation inthe number of loci between and within plants. Within interphaseand prophase nuclei, the three genomes were not intermixed andoften lay in distinct sectors. Wheat; hybrids; Triticum ; Triticeae; evolution; introgression; nuclear architecture; rDNA; in situ hybridization  相似文献   

7.
Genome relationships between the genera Leymus Hochst., PsathyrostachysNevski and Hordeum L. (Poaceae, Triticeae) were investigatedby fluorescent in situ hybridization using both total genomicDNA and cloned DNA sequences as probes. In hybrids between speciesof Hordeum and Leymus there was a clear differentiation betweenthe H genomes of Hordeum species and the genomes of Leymus speciesafter probing with genomic Hordeum or Leymus DNA. Chromosomesof species of Leymus and Psathyrostachys were also differentiatedby subtelomeric heterochromatic segments or by negative bandsalong their length. The number and location of 18S-5·8S-26SrRNA genes varied between the investigated genera. Unusually,L. angustus and P. stoloniformis rDNA sites were localized onboth ends of some chromosomes. Interphase nuclei of the Hordeumx Leymus hybrids had groups of chromosomes from both parentalgenomes in discrete, non-intermixed domains.Copyright 1994,1999 Academic Press Taxonomy, evolution, molecular evolution, repetitive DNA, rDNA sites, in situ hybridization, Triticeae, Leymus, Hordeum, Psathyrostachys  相似文献   

8.
The physical localization of three tandemly-organized repetitiveDNA sequences was investigated byin situ hybridization to metaphasechromosomes of 11 Crocus vernus accessions. The sequences includedwere the 18S–25S rDNA, the 5S rDNA and a tandemly-repeatedsequence cloned from C. vernus(clone pCvKB8). Ten 2n = 8 karyotypesfrom accessions ranging across the Alps and the Pyrenees couldbe interpreted as variations of a standard karyotype. Polymorphismswere found involving size of the satellite chromosomes, extra5S rDNA sites, and extensive differences in size and numberof pCvKB8 loci. The 2 n = 16 type did not correspond to anypossible tetraploid derived from the 2 n = 8 types. Copyright2000 Annals of Botany Company Evolution, phylogeny, Crocus vernus Hill (Iridaceae), in situ hybridization, chromosomal polymorphism, karyotype evolution, repetitive DNA  相似文献   

9.
We have used in situ hybridization to determine the number ofsites of rDNA in species in the genus Arabidopsis. A. wallichii(2n = 16) has one major pair of sites and one minor pair ofsites, while A. pumila and A. griffithiana (both 2n = 32) havesix major and two minor rDNA sites. A. thaliana (2n = 10) isknown to have two pairs of rDNA sites. a highly repeated para-centromericsequence from A. thaliana, pAL1, is absent in the other threespecies. Hence the A.thaliana genome is not present (or thecentromeric DNA has evolved substantially) in the polyploidspecies A. pumila and A. griffithiana. Analysis of Arabidopsisspecies is a valuable complement to the large programmes forgenetic analysis of A. thaliana.Copyright 1993, 1999 AcademicPress Arabidopsis, centromeric DNA, maps (genetic), nuclear architecture, repetitive DNA, ribosomal DNA, rDNA, evolution, Brassicaceae, Crucifereae, in situ hybridization  相似文献   

10.
To estimate the extent and position of homoeologous recombination during meiosis in an interspecific hybrid between two distantly related Alstroemeria species, the chromosome constitution of six first generation backcross (BC1) plants was analysed using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis. Four different probes were used for the FISH analysis: two species-specific and two rDNA probes. The six BC1 plants were obtained from crosses between the hybrid A. aurea×A. inodora with its parent A. inodora. GISH clearly identified all chromosomes of both parental genomes as well as recombinant chromosomes. The sequential GISH and FISH analysis enabled the accurate identification of all individual chromosomes in the BC1 plants, resulting in the construction of detailed karyotypes of the plants. The identification of the recombinant chromosomes provided evidence which chromosomes of the two species are homoeologous. Two of the BC1 plants were aneuploid (2n=2x+1=17) and four triploid (2n=3x=24), indicating that both n and 2n gametes were functional in the F1 hybrid. Using GISH, it was possible to estimate homeologous recombination in two different types of gametes in the F1 hyrid. The positions of the crossover points ranged from highly proximal to distal and the maximum number of crossover points per chromosome arm was three. Compared with the aneuploid plants, the triploid plants (which received 2n gametes) clearly possessed fewer crossovers per chromosome, indicating reduced chromosome pairing/recombination prior to the formation of the 2n gametes. Besides homeologous recombination, evidence was found for the presence of structural rearrangements (inversion and translocation) between the chromosomes of the parental species. The presence of the ancient translocation was confirmed through FISH analysis of mitotic and meiotic chromosomes. Received: 7 October 1998; in revised form: 4 December 1998 / Accepted: 10 December 1998  相似文献   

11.
The Peruvian scallop (Argopecten purpuratus) has been introduced to China and has successfully been hybridized with the bay scallop (A. irradians irradians). The F1 hybrids of these two scallops exhibited a large increase in production traits and some other interesting new characteristics. To understand the genetic basis of this heterosis, nuclear gene and partial mtDNA sequences, and genomic in situ hybridization (GISH) were employed to analyze the genomic organization of the hybrids. Amplification of the ribosomal DNA internal transcribed spacer (ITS) showed that the parental ITS sequences were present in all the hybrid individuals, illustrating that the hybrid offspring inherited nuclear DNA from both parents. Sequence analyses of the ITS region further confirmed that the hybrids harbored alleles from their parents; some recombinant variants were also detected, which revealed some alterations in the nuclear genetic material of the hybrids. The analysis of mitochondrial 16S rDNA showed that the hybrids possessed sequences that were identical to the 16S rDNA of the female parents, proving a matrilineal inheritance of mitochondrial genes in scallops. In addition, GISH clearly discriminated between the parental chromosomes and indicated a combination of haploid genomes of duplex parents in the hybrids. The genetic analyses in our study illustrated that the F1 hybrids inherited nuclear material from both parents and cytoplasmic genetic material maternally, and some variations occurred in the genome, which might contribute to a further understanding of crossbreeding and heterosis in scallop species.  相似文献   

12.
Karyological and genomic in situ hybridization (GISH) approaches provided evidence of the parentage and origin of the hybrid species Narcissus obsoletus. Here, we demonstrate that the putative parental species, N. serotinus L. and N. elegans (Haw.) Spach, recently proposed because of their intermediate morphological traits, have participated in the hybridization process forming this taxon. Karyotype characterization of parental genomes in populations from S Spain and N Morocco has revealed differences in chromosome length and karyotype asymmetry, highlighting their diploid nature. Multicolour GISH on metaphase plates of N. obsoletus, with N. serotinus and N. elegans DNA used as probes, showed differential fluorescent staining of 10 and 20 chromosomes from parental genomes, respectively. Both parental genomes were detected in the allopolyploid, albeit in a duplicated manner. Secondary hybridization between N. obsoletus and N. serotinus was also detected karyologically. Little karyological differentiation between different geographic regions was found in either N. serotinus or N. obsoletus. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 477–498.  相似文献   

13.
Here, we analyze long-term evolution in Nicotiana allopolyploid section Repandae (the closest living diploids are N. sylvestris, the maternal parent, and N. obtusifolia, the paternal parent). We compare data with other more recently formed Nicotiana allopolyploids. We investigated 35S and 5S nuclear ribosomal DNA (rDNA) chromosomal location and unit divergence. A molecular clock was applied to the Nicotiana phylogenetic tree to determine allopolyploid ages. N. tabacum and species of Repandae were c. 0.2 and 4.5 Myr old, respectively. In all Repandae species, the numbers of both 35S and 5S rDNA loci were less than the sum of those of the diploid progenitors. Trees based on 5S rDNA spacer sequences indicated units of only the paternal parent. In recent Nicotiana allopolyploids, the numbers of rDNA loci equal the sum of those of their progenitors. In the Repandae genomes, diploidization is associated with locus loss. Sequence analysis indicates that 35S and 5S units most closely resemble maternal and paternal progenitors, respectively. In Nicotiana, 4.5 Myr of allopolyploid evolution renders genomic in situ hybridization (GISH) unsuitable for the complete resolution of parental genomes.  相似文献   

14.
采用顺序FISH-GISH技术,12个重复序列探针,包括9个三核苷酸简单重复序列、2个卫星DNA重复序列pSc119.2和pAs1以及5S rDNA,通过重复序列的物理定位对达乌里披碱草和垂穗披碱草基因组中部分重复序列的分布特征进行了比较分析,为进一步研究垂穗披碱草和达乌里披碱草的物种形成及演化提供新的分子细胞遗传学证据。结果表明:(1)所有的序列在这2个物种的染色体上都能产生可检测的杂交信号,且在2个物种中(AAC)_(10)、(ACT)_(10)、(CAT)_(10)都表现为共分布,(AAG)_(10)与(AGG)_(10)表现为近似共分布;2个物种的H基因组除5S rDNA序列外,其他序列都产生强烈且丰富的杂交位点,St与Y基因组不同重复序列探针的荧光位点数目有所差别,表现为5S rDNA、pSc119.2、(AAC)_(10)、(CAT)_(10)、(ACT)_(10)、(CAC)_(10)探针的信号位点较少或无信号,其余的探针信号位点稍多。(2)达乌里披碱草的第2对染色体上具有(AAC)_(10)、(CAT)_(10)、(ACT)_(10)的杂交位点、第6对染色体上具有(CAC)_(10)的杂交位点,而在垂穗披碱草的St基因组中未观察到上述序列杂交位点;达乌里披碱草St基因组仅有第4对染色体的端部具有pSc119.2杂交位点,而在垂穗披碱草St基因组中的pSc119.2杂交位点位于第5对染色体长臂的间隔区;相对于达乌里披碱草,垂穗披碱草St和Y基因组染色体含有更多的重复序列杂交位点。(3)达乌里披碱草的H/Y基因组间易位在不同材料间是稳定存在的,达乌里披碱草基因组相对稳定,不同材料间H基因组重复序列杂交信号多态性高于St和Y基因组;垂穗披碱草基因组的变异较大,不同材料间St和Y基因组重复序列杂交信号多态性高于H基因组。研究认为,垂穗披碱草和达乌里披碱草的H基因组均起源于布顿大麦,St基因组可能起源于不同的拟鹅观草属物种;与达乌里披碱草相比垂穗披碱草St与Y基因组可能具有更高的染色体结构变异性,而垂穗披碱草St与Y基因组变异较大的原因可能是与同区域分布的含StY基因组的物种发生了种间渗透杂交。  相似文献   

15.
The chromosomal locations of the 18S-26S (45S) and 5S rDNA loci in cytotypes AA, BB, and AABB ofScilla scilloides Complex from Korea were physically mapped using multicolor fluorescencein situ hybridization (McFISH). Genomicin situ hybridization (GISH) was also performed to distinguish between the AA and BB genomes in allotetraploid AABB plants. One 18S-26S rDNA locus was detected in both AA (a2) and BB (b1 ); one locus also was found in the allopolyploid AABB (b1 ). This demon-strated the loss of that locus in genome A. GISH with biotin-labeled DNA from the BB genome and digoxigenin-labeled 18S-26S rDNA probes revealed that the 18S-26S rDNA in AABB plants was localized in the nucleolus organizer region (NOR) of genome B. One and two 5S rDNA loci were found in diploids AA and BB, respectively. As expected, all three 5S rDNA loci were detected in the AABB plants. The sequence identities of the 5S rDNA genes among cytotypes AA and BB, AA and AABB, and BB and AABB were 99%, 95%, and 95%, respectively. These authors contributed equally to this paper  相似文献   

16.
Repetitive sequences have been widely used for examining genomeand species relationships by in situ and Southern hybridization.In the present study, double-stranded DNA sequences, from denaturedDNA reannealed to Cot = 1, from Avena strigosa(2 n = 2x = 14;A genome; referred to as CotA) and Avena sativa(2n = 6 x =42; ACD genome; referred to as CotACD) were isolated with ahydroxyapatite column, and were used for in situ hybridizationon hexaploid A. sativa chromosomes. Probe CotACD labelled allchromosomes evenly throughout their length at the same intensity.Probe CotA labelled the 28 A and D genome chromosomes stronglyand the 14 C genome chromosomes weakly. Three cloned repetitivesequences, pAvKB9 (126 bp), pAvKB26 (223 bp) and pAvKB32 (721bp) were characterized in the A, B, C and D Avena genomes andthe genus Arrhenatherum using molecular and cytological methods.Clones pAvKB9 and pAvKB26 were absent from the Avena C genome,while both could identify the presence of the D genome by Southernhybridization. In situ hybridization to diploid and tetraploidAvena species revealed that the probes showed a dispersed genomicorganization and that they are present on both arms of all chromosomes.These sequences were excluded from areas where tandem repeats,such as rRNA genes and telomeres, are present. These resultsindicate the close relationship between A and D genomes andthe presence of common DNA sequences between A and C Avena genomes.All three clones hybridized to Southern blots containingArrhenatherumdigested genomic DNA, indicating Arrhenatherum’s closeaffinity to A, B and D Avena genomes. Copyright 2000 Annalsof Botany Company Cereals, DNA, hydroxyapatite, in situ hybridization, oats, reassociation kinetics, repetitive DNA  相似文献   

17.
Root tip mitotic and tapetal polytene cells ofVigna unguiculataandPhaseolus coccineus were hybridized with a ribosomal DNA(rDNA) probe. While the number of rDNA sites were as expectedforP. coccineus, it was surprisingly higher inV. unguiculatawhere ten rDNA sites were found in both tissues. A sequentialbanding technique on mitotic chromosomes ofV. unguiculata wasused to map the positions of the rDNA sites more accurately.In mitotic cells eight of the rDNA hybridization sites weresimilar in size while the remaining sites were smaller. In contrast,the hybridization sites were more variable in size in polytenecells with no more than six sites being relatively large. Thedifferences in size of the hybridization sites between the twotissues suggest differential amplification of the rDNA sequences.InP. coccineus six hybridization sites were found in both tissuetypes. The relative sizes of the sites were similar in bothtissue. The presence of speckled signal surrounding four ofthe six sites suggested that at least four of the rDNA siteswere transcribed. rDNA; in situ ; Vigna ; Phaseolus ; polytene; tapetal; Leguminosae  相似文献   

18.
The chromosome set of Patinopecten yessoensis (Jay, 1857) wascharacterized using Giemsa staining, DAPI staining and fluorescencein situ hybridization (FISH) with three repetitive DNA probes[18S–28S rDNA, 5S rDNA and telomeric (TTAGGG)n]. DAPIstaining showed that AT-rich regions were located on the centromereof almost all chromosomes and interstitial banding was not observed.FISH showed that 18S–28S rDNA spread over the short armsof two subtelocentric chromosome pairs and 5S rDNA was locatedon the long arm of one subtelocentric chromosome pair. SequentialFISH demonstrated that 18S–28S and 5S rDNA were locatedon different chromosomes. FISH also showed that the vertebratetelomeric sequence (TTAGGG)n was located on both ends of eachchromosome and no interstitial signals were detected. Sequential18S–28S rDNA and (TTAGGG)n FISH indicated that repeatedunits of the two multicopy families were closely associatedon the same chromosome pair. (Received 4 January 2007; accepted 1 September 2007)  相似文献   

19.
The genusAvena L. (Poaceae) consists of diploid, tetraploid,and hexaploid species, with the B genome known only in tetraploidspecies and the D genome in the hexaploid species. DNA:DNAinsitu hybridization, using total genomic DNA from diploidAvenastrigosa Schreb. (Asgenome) as a probe, labelled all 28 chromosomesof the AB tetraploidAvena vaviloviana (Malz.) Mordv. stronglyand uniformly, revealing the close relationship between thesetwo genomes. Comparison of patterns of size-separated DNA restrictionfragments between the diploidA. strigosa and the tetraploidA.vaviloviana , using 32 different restriction enzymes, revealedno differences. Southern hybridization using total AB genomicDNA as a probe also gave no differences in banding patternsbetween the two genomes, even when a large excess of A genomicDNA was used as a block. From anA. vaviloviana genomic library,1800 colonies were blotted and probed sequentially with A andAB genomic DNA, but no colony was identified to be B genomespecific. DNA digests of AB genome tetraploids with restrictionenzymeHae III gave a strong band at 4.2 kb. Clone pAbKB3, derivedfrom the 4.2 kb band, was found to be part of aTy1-copia -likeretrotransposon present in A and B genome chromosomes. ClonedrRNA genes were used forin situ hybridization and showed thatdiploidA. strigosa has four major sites for 18S-25S rDNA andtwo pairs of sites for 5S rDNA (pairs on the same satellitedchromosome, on different chromosome arms), while 4xA. vavilovianahas eight major sites for 18S-25S rDNA and four pairs of sitesfor 5S rDNA (pairs on the same satellited chromosome, on differentchromosome arms). A repetitive sequence from rye pSc119.2, showeddispersed hybridization, while the telomeric sequence in clonepLT11 hybridized to telomeres. Again no discrimination was possiblebetween A and B genome chromosomes. The molecular similaritiesbetween the diploidA. strigosa and thebarbata group tetraploidsclearly indicate that thebarbata group of tetraploids arosefrom Asdiploids through autotetraploidization. Avena ; evolution; repetitive sequences; in situ hybridization; retrotransposons; genome organization  相似文献   

20.
Wang Q  Liu H  Gao A  Yang X  Liu W  Li X  Li L 《PloS one》2012,7(2):e31033
Polyploidization is a major evolutionary process. Approximately 70–75% species of Triticeae (Poaceae) are polyploids, involving 23 genomes. To investigate intergenomic rearrangements after polyploidization of Triticeae species and to determine the effects of environmental factors on them, nine populations of a typical polyploid Triticeae species, Kengyilia thoroldiana (Keng) J.L.Yang et al. (2n = 6x = 42, StStPPYY), collected from different environments, were studied using genome in situ hybridization (GISH). We found that intergenomic rearrangements occurred between the relatively large P genome and the small genomes, St (8.15%) and Y (22.22%), in polyploid species via various types of translocations compared to their diploid progenitors. However, no translocation was found between the relatively small St and Y chromosomes. Environmental factors may affect rearrangements among the three genomes. Chromosome translocations were significantly more frequent in populations from cold alpine and grassland environments than in populations from valley and lake-basin habitats (P<0.05). The relationship between types of chromosome translocations and altitude was significant (r = 0.809, P<0.01). Intergenomic rearrangements associated with environmental factors and genetic differentiation of a single basic genome should be considered as equally important genetic processes during species'' ecotype evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号