首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding pocket, 1323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.  相似文献   

6.
Retinoid X receptor (RXR) and Ultraspiracle (USP) play a central role as ubiquitous heterodimerization partners of many nuclear receptors. While it has long been accepted that a wide range of ligands can activate vertebrate/mollusc RXRs, the existence and necessity of specific endogenous ligands activating RXR-USP in vivo is still matter of intense debate. Here we report the existence of a novel type of RXR-USP with a ligand-independent functional conformation. Our studies involved Tribolium USP (TcUSP) as representative of most arthropod RXR-USPs, with high sequence homology to vertebrate/mollusc RXRs. The crystal structure of the ligand-binding domain of TcUSP was solved in the context of the functional heterodimer with the ecdysone receptor (EcR). While EcR exhibits a canonical ligand-bound conformation, USP adopts an original apo structure. Our functional data demonstrate that TcUSP is a constitutively silent partner of EcR, and that none of the RXR ligands can bind and activate TcUSP. These findings together with a phylogenetic analysis suggest that RXR-USPs have undergone remarkable functional shifts during evolution and give insight into receptor-ligand binding evolution and dynamics.  相似文献   

7.
8.
9.
10.
Jones G  Jones D  Teal P  Sapa A  Wozniak M 《The FEBS journal》2006,273(21):4983-4996
The in vivo ligand-binding function and ligand-binding activity of the Drosophila melanogaster retinoid-X receptor (RXR) ortholog, ultraspiracle, toward natural farnesoid products of the ring gland were assessed. Using an equilibrium fluorescence-binding assay, farnesoid products in the juvenile hormone (JH) biosynthesis pathway, and their epoxy derivatives, were measured for their affinity constant for ultraspiracle (USP). Farnesol, farnesal, farnesoic acid and juvenile hormone III exhibited high nanomolar to low micromolar affinity, which in each case decreased upon addition of an epoxide across a double bond of the basic farnesyl structure. Similar analysis of the substitution on C1 of methyl ether, alcohol, aldehyde, and carboxylic acid showed that each conferred weaker affinity than that provided by the methyl ester. Attention was thus focused for a ring-gland farnesoid product that possesses the features of methyl ester and lack of an epoxide. A secreted product of the ring gland, methyl farnesoate, was identified possessing these features and exhibited an affinity for ultraspiracle (K(d) = 40 nm) of similar strength to that of RXR for 9-cis retinoic acid. Mutational analysis of amino acid residues with side chains extending into the ligand-binding pocket cavity (and not interacting with secondary receptor structures or extending to the receptor surface to interact with coactivators, corepressors or receptor dimer partners) showed that the mutation C472A/H475L strongly reduced USP binding to this ring gland product and to JH III, with less effect on other ring-gland farnesoids and little effect on binding by (the unnatural to Drosophila) JH I. Along with the ecdysone receptor, USP is now the second arthropod nuclear hormone receptor for which a secreted product of an endocrine gland that binds the receptor with nanomolar affinity has been identified.  相似文献   

11.
cDNA for ultraspiracle (USP) from the lepidopteran rice stem borer Chilo suppressalis was cloned using PCR techniques. The deduced amino acid sequence of C. suppressalis USP (CsUSP) was very similar to those of other lepidopteran USPs, especially to the Manduca sexta USP-2 isoform. Northern hybridization analysis detected a 6.5-kb message in the epidermis, fat body, and midgut of wandering larvae. CsUSP mRNA expression in the epidermis varied little during the last larval instar. Gel mobility shift assays showed that in vitro translated C. suppressalis ecdysone receptor (CsEcR) and CsUSP proteins bound to the Pal1 or Drosophila melanogaster hsp27 ecdysone response element as a heterodimer. In a ligand-receptor binding assay, [(3)H]ponasterone A ([(3)H]PoA) did not bind to individual CsEcR or CsUSP protein, but bound strongly to the CsEcR/CsUSP complex. [(3)H]PoA binding to CsEcR/CsUSP complex was competed by 20-hydroxyecdysone and a non-steroidal ecdysteroid agonist, RH-5992, but not by cholesterol, indicating that compounds with molting hormone activity against C. suppressalis can bind specifically to the CsEcR/CsUSP complex.  相似文献   

12.
13.
14.
Transformation with a chimeric receptor containing the glucocorticoid transactivation and DNA-binding domains fused to an ecdysteroid receptor ligand-binding domain permits ecdysone agonist-inducible gene expression in monocotyledonous plant cells. The inducible system is based on the specific activation of a chimeric receptor containing the ligand-binding domain of the Heliothis virescens ecdysteroid receptor and the inducer RH5992 (a 20-hydroxyecdysone agonist). RH5992 is an non-steroidal agrochemical with a high specificity for lepidopteran ecdysone receptors. Addition of RH5992 to transformed cells results in high levels of inducible expression in a ligand-specific manner, particularly when the effector receptor is coupled to the strong transactivator VP16. A chimeric construct containing the Drosophila ecdysone ligand-binding domain failed to activate reporter gene activity with RH5992, while activation was observed in the presence of muristeroneA. The system described provides the basis for an inducible gene expression system that is compatible with agricultural use. Received: 24 September 1998 / Accepted: 15 January 1999  相似文献   

15.
The insect steroid hormone 20-hydroxyecdysone (20E) binds to its cognate nuclear receptor composed of the ecdysone receptor (EcR) and Ultraspiracle (USP) and triggers the main developmental transitions, in particular molting and metamorphosis. We present the crystal structure of the ligand-binding domains of EcR/USP in complex with 20E at 2.4A resolution and compare it with published structures of EcR/USP bound to ponasterone A (ponA). ponA is essentially identical to 20E but lacks the 25-OH group of 20E. The structure of 20E-bound EcR indicates that an additional hydrogen bond is formed compared with the ponA-bound receptor, yet, paradoxically, ponA has a significantly higher affinity for EcR than 20E. Theoretical studies based on docking and free energy methods lead to a rationale for understanding the difference in binding affinities between 20E and ponA. Results of the calculations indicate that the favorable contribution from the extra H-bond made by 25-OH of 20E is counterbalanced by its larger desolvation cost compared with that of ponA. The contribution of 25-OH to the binding affinity is further compared with those of 20- and 22-OH groups. Ligands that lack the 20- or 22-OH group are indeed known to bind less favorably to EcR than 20E, an effect opposite to that observed for ponA. The results indicate that their respective contributions to receptor-ligand complex stability reside mostly in their different contributions to solvation/desolvation. Together, the data demonstrate the critical role of ligand desolvation in determining binding affinity, with general implications for the binding of hormones to their cognate nuclear receptors.  相似文献   

16.
17.
The receptor for the insect molting hormone, ecdysone, is a heterodimer consisting of the Ecdysone Receptor and Ultraspiracle (USP) proteins. The ligand binding domain sequences of arthropod USPs divide into two distinct groups. One group consists of sequences from members of the holometabolous Lepidoptera and Diptera, while the other arthropod sequences group with vertebrate retinoid-X-receptors (RXRs). We therefore wondered whether USP/RXR structure could be used to clarify the contentious phylogenetic position of the order Strepsiptera, which has proposed affinities with either Diptera or Coleoptera. We have cloned and sequenced the USP/RXR from the strepsipteran Xenos pecki. Phylogenetic analyses are not consistent with a close affinity between Strepsiptera and Diptera.Electronic Supplementary Material Supplementary material is available for this article at Edited by D. Tautz  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号