首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The etiology of radiation-induced cerebrovascular rarefaction remains unknown. In the present study, we examined the effect of whole-brain irradiation on endothelial cell (EC) proliferation/apoptosis and expression of various angiogenic factors in rat brain. F344 × BN rats received either whole-brain irradiation (a single dose of 10 Gy γ rays) or sham irradiation and were maintained for 4, 8 and 24 h after irradiation. Double immunofluorescence staining was employed to visualize EC proliferation/apoptosis in brain. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), endothelial-specific receptor tyrosine kinase (Tie-2), and Ang-2 in brain were determined by real-time RT-PCR and immunofluorescence staining. A significant reduction in CD31-immunoreactive cells was detected in irradiated rat brains compared with sham-irradiated controls. Whole-brain irradiation significantly suppressed EC proliferation and increased EC apoptosis. In addition, a significant decrease in mRNA and protein expression of VEGF, Ang-1 and Tie-2 was observed in irradiated rat brains. In contrast, whole-brain irradiation significantly upregulated Ang-2 expression in rat brains. The present study provides novel evidence that whole-brain irradiation differentially affects mRNA and protein expression of VEGF, Ang-1, Tie-2 and Ang-2. These changes are closely associated with decreased EC proliferation and increased EC apoptosis in brain.  相似文献   

2.
Paracrine interactions between endothelial cells (EC) and mural cells act as critical regulators of vessel wall assembly, vessel maturation and define a plasticity window for vascular remodeling. The present study was aimed at studying blood vessel maturation processes in a novel 3-dimensional spheroidal coculture system of EC and smooth muscle cells (SMC). Coculture spheroids differentiate spontaneously in a calcium-dependent manner to organize into a core of SMC and a surface layer of EC, thus mimicking the physiological assembly of blood vessels with surface lining EC and underlying mural cells. Coculture of EC with SMC induces a mature, quiescent EC phenotype as evidenced by 1) a significant increase in the number of junctional complexes of the EC surface layer, 2) a down-regulation of PDGF-B expression by cocultured EC, and 3) an increased resistance of EC to undergo apoptosis. Furthermore, EC cocultured with SMC become refractory to stimulation with VEGF (lack of CD34 expression on VEGF stimulation; inability to form capillary-like sprouts in a VEGF-dependent manner in a 3-dimensional in gel angiogenesis assay). In contrast, costimulation with VEGF and Ang-2 induced sprouting angiogenesis originating from coculture spheroids consistent with a model of Ang-2-mediated vessel destabilization resulting in VEGF responsiveness. Ang-2 on its own was able to stimulate endothelial cells in the absence of Ang-1 producing SMC, inducing lateral sheet migration as well as in gel sprouting angiogenesis. Taken together, the data establish the spheroidal EC/SMC system as a powerful cell culture model to study paracrine interactions in the vessel wall and provide functional evidence for smooth muscle cell-mediated quiescence effects on endothelial cells.  相似文献   

3.
Vascular development and its transformation are necessary for successful hemochorial placentation, and vascular endothelial growth factor (VEGF), angiopoietins, and their receptors may be involved in the molecular regulation of this process. To determine the potential role of these putative regulators in a widely studied primate, the common marmoset, we investigated their mRNA expression and protein location in the placenta throughout pregnancy using in situ hybridization, Northern blot analysis, and immunocytochemistry. VEGF was localized in decidual and cytotrophoblast cells, and its highest expression was found in the maternal decidua. The Flt receptor was exclusively detected in the syncytial trophoblast with increasing expression in placentae from 10 wk to term. Soluble Flt (sFlt) was also detectable by Northern blot analysis. KDR receptor expression was restricted to mesenchymal cells during early placentation and to the fetoplacental vasculature during later placentation. KDR expression increased throughout pregnancy. Angiopoietin-1 (Ang-1) was localized in the syncytial trophoblast, being highly expressed in the second half of gestation. Ang-2 mRNA localized exclusively to maternal endothelial cells, and was highly expressed in 10-wk placentae. The Tie-2 receptor was found in cytotrophoblast cells and in fetal and maternal vessels. High Tie-2 levels were detected in the wall of chorion vessels at 14-wk, 17-wk, and term placentae. These results suggest that the processes of trophoblast invasion, maternal vascular transformation, and fetoplacental vascular differentiation and development are regulated by the specific actions of angiogenic ligand-receptor pairs. Specifically, 1) VEGF/Flt and Ang-1/Tie-2 may promote trophoblast growth, 2) VEGF/KDR and Ang-1/Tie-2 may support fetoplacental vascular development and stabilization, 3) sFlt may balance VEGF actions, and 4) Ang-2/Tie-2 may remodel the maternal vasculature.  相似文献   

4.
The angiopoietins/Tie-2 system is essential for the maintenance of vascular integrity and angiogenesis. The functional role of angiopoietin-2 (Ang-2) in the regulation of angiogenesis is dependent on other growth factors such as VEGF and a given physiopathological conditions. This study investigates the potential role of Ang-2 in myocardial angiogenesis and fibrosis formation in the diabetic db/db mouse. Diabetic db/db mice received intramyocardial administration of either adenovirus Ang-2 (Ad-CMV-Ang-2) or Ad-β-gal. The levels of Tie-2, VEGF, caspase-3, Wnt7b, fibroblast-specific protein-1 (FSP-1), and adhesion molecules (ICAM-1 and VCAM-1) expression were measured. Apoptosis, capillary density, and cardiac fibrosis were also analyzed in the db/db mouse hearts. Overexpression of Ang-2 suppressed Tie-2 and VEGF expression in db/db mouse hearts together with significant upregulation of Wnt7b expression. Overexpression of Ang-2 also sensitizes ICAM-1 and VCAM-1 expression in db/db mouse hearts. Immunohistochemical analysis revealed that overexpression of Ang-2 resulted in a gradual apoptosis as well as interstitial fibrosis formation, these leading to a significant loss of capillary density. Data from these studies were confirmed in cultured mouse heart microvascular endothelial cells (MHMEC) exposed to excessive Ang-2. Exposure of MHMEC to Ang-2 resulted in increased caspase-3 activity and endothelial apoptosis. Knockdown of Ang-2 attenuated high glucose-induced endothelial cell apoptosis. Further, counterbalance of Ang-2 by overexpression of Ang-1 reversed loss of capillary density and fibrosis formation in db/db mouse hearts. Our data demonstrate that Ang-2 increases endothelial apoptosis, sensitizes myocardial microvascular inflammation, and promotes cardiac fibrosis and thus contributes to loss of capillary density in diabetic diseases.  相似文献   

5.
We previously demonstrated that cyclic stretch of cardiac myocytes activates paracrine signaling via vascular endothelial growth factor (VEGF) leading to angiogenesis. The present study tested the hypothesis that cyclic stretch upregulates tyrosine kinase receptors in rat coronary microvascular endothelial cells (RCMEC) and human umbilical vein endothelial cells (HUVEC). VEGF receptor-2 (Flk-1) protein levels increased in HUVEC and RCMEC in a time-dependent manner, but the increase occurred much earlier in RCMEC than in HUVEC. The enhancement of Flk-1 protein level was not inhibited by addition of VEGF neutralizing antibodies, indicating that VEGF is not involved in stretch-induced Flk-1 expression. VEGF receptor-1 (Flt-1) protein and mRNA were not changed by stretch. However, Tie-2 and Tie-1 protein levels increased in RCMEC. Angiopoietin-1 and -2, the ligands for Tie-2, increased in cardiac myocytes subjected to cyclic stretch but were not affected by stretch in endothelial cells (EC). Stretch or incubation of RCMEC with VEGF increased cell proliferation moderately, whereas stretch + VEGF had an additive effect on proliferation. Mechanical stretch induces upregulation of the key tyrosine kinase receptors Flk-1, Tie-2, and Tie-1 in vascular EC, which underlies the increase in sensitivity of EC to growth factors and, therefore, facilitates angiogenesis. These in vitro findings support the concept that stretch of cardiac myocytes and EC plays a key role in coronary angiogenesis.  相似文献   

6.
BACKGROUND: Fibulin-5 is a novel extracellular protein that is thought to act as a bridging peptide between elastin fibers and cell surface integrins in blood vessel wall. Fibulin-5 binding to endothelial cell (EC) surface integrins may effect cell proliferation and cell attachment to extracellular matrix (ECM) or to artificial surfaces. In this paper, we describe the effects of fibulin-5 on attachment, adhesion, and proliferation of primary human EC. After demonstrating that fibulin-5 over-expression inhibited EC proliferation, we tested the hypothesis that co-expression of fibulin-5 and VEGF165 will lead to unique EC phenotype that will exhibit increased adherence properties and retain its proliferation capacity. METHODS AND RESULTS: Fibulin-5 and VEGF165 gene transfer to primary human saphenous vein endothelial cells was accomplished using retroviral vectors encoding the two genes. Transgene expression was verified using immunohistochemistry, Western blotting, and ELISA. Fibulin 5 over-expression tended to improve immediate EC attachment (30 min after seeding) and improved significantly adhesion (>40%) under shear stress tested 24h after EC seeding. The effects of fibulin-5 and VEGF165 on EC proliferation in the presence or absence of basic FGF were also tested. EC expressing fibulin-5 had reduced proliferation while VEGF165 co-expression ameliorated this effect. CONCLUSION: Fibulin-5 improved EC attachment to artificial surfaces. Dual transfer of fibulin-5 and VEGF165 resulted in EC phenotype with increased adhesion and improved proliferation. This unique EC phenotype can be useful for tissue engineering on endovascular prostheses.  相似文献   

7.
Signaling and regulation of endothelial cell survival by angiopoietin-2   总被引:1,自引:0,他引:1  
Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.  相似文献   

8.
促血管生成素的生物学特点和应用前景   总被引:1,自引:0,他引:1  
促血管生成素(Ang)家族是调节血管生成的一类细胞因子,包括Ang-1、Ang-2、Ang-3和Ang-4等4个成员,Ang-1和Ang-2是其中最重要的成员。Tie-2是Ang家族的共同受体。Ang-1与Tie-2结合后激活下游信号通路,起到抑制内皮凋亡、促进内皮存活和迁移、维持血管完整性的作用;Ang-2则是Ang-1天然的抑制剂,其拮抗的效应与局部血管内皮生长因子(VEGF)的水平有关,VEGF存在时促进新生血管形成,VEGF缺乏时则有利于血管的消退。Ang参与生理和病理性的血管新生,与肿瘤和其他疾病有密切的关系,有广泛的应用前景。  相似文献   

9.
Endothelial cell survival and apoptosis in the tumor vasculature   总被引:8,自引:0,他引:8  
Angiogenesis is essential for the growth and metastasis of solid tumors. The balance of endothelial cell (EC) proliferation and apoptosis is a major determinant in tumor angiogenesis. Recently, several studies demonstrated that numerous angiogenic factors not only induce angiogenesis but also function as EC survival factors. Vascular endothelial growth factor (VEGF), a potent angiogenic factor, is also an EC survival factor in embryonic vasculogenesis and tumor angiogenesis. VEGF activates specific intracellular survival pathways in ECs including Bcl-2, A1, IAP, Akt, and Erk. Integrins may function as EC survival factors by preventing anoikis by enhancing binding to the extracellular matrix. In addition, integrins may function in concert with VEGF to promote EC survival. Angiopoietin-1 (Ang-1) has recently been shown to stabilize EC networks by binding to the EC-specific tyrosine kinase receptor Tie-2. Pericytes also function as EC survival factors, by cell-cell contact, secretion of survival factors, or both. Targeting any of the above mechanisms for EC survival may provide novel antineoplastic strategies.  相似文献   

10.
Angiopoietins 1 and 2, ligands for the receptor kinase Tie-2, have been proposed to play critical but opposing roles in vascular development. Since signaling by Tie-2 is likely affected by other endothelial cell receptors such as Flk-1, the receptor for VEGF, and cell–cell adhesion receptors PECAM1 and VE-cad, we explored their interactions in a 3D model of vasculogenesis. When murine embryoid bodies (EBs) were treated with VEGF in Matrigel in the presence or absence of Ang-1 or Ang-2 for eight days, Ang-1 abrogated vascular sprouting for treatments started at days 0 or 3. In contrast, Ang-2 greatly accelerated vascular sprouting compared to untreated EBs. These results were confirmed in a second model system where VEGF treated HUVECs were grown in Matrigel in the presence or absence of Ang-1 or Ang-2. Since vascular sprouting must be precisely controlled in the developing embryo, it is likely that cell–cell adhesion molecules play a role in sensing the density of vascular sprouts. In this respect, we have shown that PECAM1 and CEACAM1 play essential roles in vascular sprouting. We now show that PECAM1 is associated with Tie-2, becomes phosphorylated on its ITIMs, and recruits the inhibitory phosphatases SHP-1 and SHP-2. In addition, PECAM1 is associated with VE-cad and may similarly regulate its signaling via recruitment of SHP-1/2.  相似文献   

11.
In some capillary beds, pericytes regulate endothelial growth. Capillaries with high filtration capacity, such as those in renal glomeruli, lack pericytes. Glomerular endothelium lies adjacent to visceral epithelial cells (podocytes) that are anchored to and cover the anti-luminal surface of the basement membrane. We have tested the hypothesis that podocytes can function as endothelial supporting cells. Endothelial cells were outgrown from circulating endothelial progenitors of normal subjects and were extensively characterized. These blood outgrowth endothelial cells (BOECs) expressed endothelial markers, lacked stem cell markers, and expressed the angiopoietin-1 receptor, Tie-2, and the vascular endothelial growth factor (VEGF) receptor, Flk-1. Differentiated podocytes in culture expressed and secreted VEGF, which was upregulated 4.5-fold by high glucose. In complete medium, BOECs formed thin cell-cell connections and multicellular tubes on Matrigel, the in vitro correlate of angiogenesis. This was impaired in deficient media but rescued by co-incubation with Transwell Anopore inserts containing differentiated podocytes. To assess whether VEGF was the major podocyte-derived signal that rescued BOEC angiogenesis, we examined angiogenesis of control and Flk-1-deficient BOECs. Co-incubation with podocytes or addition of recombinant VEGF each rescued angiogenesis in control BOECs, but both failed to support maintenance and angiogenesis in Flk-1-deficient BOECs. Finally, co-culture with podocytes increased BOEC-proliferation. In concert, these findings suggest a model in which glomerular visceral epithelial cells function as pericyte-like endothelial supporting cells. Podocyte-derived VEGF is a required and sufficient regulator of vascular endothelial maintenance, and its upregulation in podocytes by high glucose may be the mechanism for the increased glomerular angiogenesis that is observed in vivo in early diabetic glomerular injury. These studies were supported by grants from the National Institutes of Health (NIH-NIDDK 63360) and the Juvenile Diabetes Research Foundation (JDRF-1-2004-78).  相似文献   

12.
Endothelial progenitors derived from human embryonic stem cells (hESCs) hold much promise in clinical therapy. Conventionally, lineage-specific differentiation of hESCs is achieved through supplementation of various cytokines and chemical factors within the culture milieu. Nevertheless, this is a highly inefficient approach that is often limited by poor replicability. An alternative is through genetic modulation with recombinant DNA. Hence, this study investigated whether transduction of hESCs with an adenoviral vector expressing the human VEGF(165) gene (Ad-hVEGF(165)) can enhance endothelial-lineage differentiation. The hESCs were induced to form embryoid bodies (EBs) by culturing them within low-attachment plates for 7 days, and were subsequently trypsinized into single cells, prior to transduction with Ad-hVEGF(165). Optimal transduction efficiency with high cell viability was achieved by 4-h exposure of the differentiating hESCs to viral particles at a ratio of 1 : 500 for three consecutive days. ELISA results showed that Ad-hVEGF(165)-transduced cells secreted human vascular endothelial growth factor (hVEGF) for more than 30 days post-transduction, peaking on day 8, and the conditioned medium from the transduced cells stimulated extensive proliferation of HUVEC. Real-time PCR analysis showed positive upregulation of VEGF, Ang-1, Flt-1, Tie-2, CD34, CD31, CD133 and Flk-1 gene expression in Ad-hVEGF(165)-transduced cells. Additionally, flow cytometric analysis of CD133 cell surface marker revealed an approximately 5-fold increase in CD133 marker expression in Ad-hVEGF(165)-transduced cells compared to the non-transduced control. Hence, this study demonstrated that transduction of differentiating hESCs with Ad-hVEGF(165) facilitated expression of the VEGF transgene, which in turn significantly enhanced endothelial differentiation of hESCs.  相似文献   

13.
Cultured vascular endothelial cells were exposed to fluid shear stress by means of a rotary-disc shear-loading device, and the physiological effects of the conditioned medium (CM) and the homogenate (HM) of the cells on migration, adhesion and growth of endothelial cells (EC) or smooth muscle cells (SMC) were studied. Effects of shear stress on the production and secretion of collagen, one of the extracellular matrices of EC, were also studied. CM stimulated the adhesion and growth of SMC, but not of EC themselves. The ability to stimulate SMC adhesion and growth was similar in CM obtained from the static and shear-loaded cells. HM of the shear-loaded EC stimulated SMC migration. Further, HM of the shear-loaded EC contained increased amounts of collagen compared with the static EC. These results suggest that: 1) EC produce and secrete accelerators for the adhesion and growth of SMC, 2) EC react to the physical stimulus of fluid shear stress to produce stimulators of SMC migration, and 3) EC produce collagen, the production of which is enhanced by fluid shear stress.  相似文献   

14.
OBJECTIVE AND BACKGROUND: Inflammation plays a critical role in all stages of atherogenesis. Proliferating vascular smooth muscle cells (SMC) and endothelial cells (EC) enhancing the inflammatory response, both contribute to the progression of atherosclerosis. Anti-proliferative, anti-inflammatory and anti-oxidative therapy seems to be a promising therapeutic strategy. The aim of this study was to assess the anti-proliferative and anti-inflammatory effect of the beta-blocker nebivolol in comparison to metoprolol in vitro and to find out whether nebivolol inhibits neointima formation in vivo. METHODS AND RESULTS: Real-time-RT-PCR revealed a decrease in VCAM-1, ICAM-1, PDGF-B, E-selectin and P-selectin mRNA expression in human coronary artery EC and SMC incubated with nebivolol for 72 hours while metoprolol did not have this effect. Nebivolol reduced MCP-1 and PDGF-BB protein in the culture supernatant of SMC and EC, respectively. Sprague-Dawley rats were treated with nebivolol for 0 or 35 days before and 28 days after carotid balloon injury. Immunohistological analyses showed that pre-treatment with nebivolol was associated with a decreased number of SMC layers and macrophages and an increased lumen area at the site of the arterial injury. The intima area was reduced by 43% after pre-treatment. CONCLUSION: We found that nebivolol reduced the expression of proinflammatory genes in endothelial cells and vascular smooth muscle cells in vitro whereas metoprolol did not. In vivo, nebivolol inhibited neointima formation by reducing SMC proliferation and macrophage accumulation.  相似文献   

15.
Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) are the two ligands of the Tie-2 receptor, a receptor tyrosine kinase that is expressed on the endothelium. A balanced angiopoietin/Tie-2 system is critical for the maintenance of vascular integrity. We investigated the potential role of a disrupted angiopoietin/Tie-2 system on hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Using streptozotocin (STZ) mice subjected to myocardial ischemia, we examined the effects of shifting the Ang-2-to-Ang-1 ratio on myocardial infarction size, apoptosis, bone marrow (BM) cell-endothelial progenitor cell (EPC) differentiation, and angiogenesis. In control mice, myocardial ischemia increased expression of both Ang-2 and Tie-2. In STZ mice, Ang-2 expression was elevated, whereas Tie-2 expression was reduced, and neither was significantly altered by ischemia. Myocardial infarct size and apoptosis were increased in STZ compared with control mice. Using in vivo administration of an adenovirus containing Ang-1 or Ang-2, we found that shifting the Ang-2-to-Ang-1 ratio to favor Ang-1 reduced myocardial apoptosis and infarct size in STZ mice, while shifting the Ang-2-to-Ang-1 ratio to favor Ang-2 resulted in a significant increase in myocardial infarct size and apoptosis in control mice. Myocardial ischemia-stimulated BM cell-EPC differentiation was inhibited and myocardial angiogenesis was reduced in STZ mice. Systemic administration of Ad-Ang-1 restored BM cell-EPC differentiation and increased myocardial VEGF expression and angiogenesis in STZ mice. Our data demonstrate that disturbed angiopoietin/Tie-2 signaling contributes to the hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Restoration of the Ang-2-to-Ang-1 ratio may be a novel therapeutic strategy for the treatment of diabetic myocardial ischemic diseases.  相似文献   

16.
Inflammation and angiogenesis are associated with pathological disorders. TNF-alpha is a major inflammatory cytokine that also regulates angiogenesis. TNF-alpha has been shown to regulate Tie-2 and angiopoietin (Ang) expression, but the functional significance is less clear. In this study, we showed that TNF-alpha induced a weak angiogenic response in a mouse cornea assay. Systemic overexpression of Ang-1 or Ang-2 dramatically increased corneal angiogenesis induced by TNF-alpha. In the absence of TNF-alpha, neither Ang-1 nor Ang-2 promoted corneal angiogenesis. Low doses (0-25 ng/ml) of TNF-alpha increased vascular branch formation of cultured endothelial cells. Overexpression of Ang-1 or Ang-2 enhanced the effects of TNF-alpha. These data suggest that Tie-2 signaling synergistically amplifies and participates in TNF-alpha-mediated angiogenesis. In addition, high doses (>/=50 ng/ml) of TNF-alpha induced apoptosis in endothelial cells, but addition of Ang-1 or Ang-2 significantly reduced cell death. Enhanced endothelial cell survival was correlated with Akt phosphorylation. Collectively, our data reveal dual functional roles of Tie-2: low doses enhance TNF-alpha-induced angiogenesis, and high doses attenuate TNF-alpha-induced cell death. The study provides evidence supporting a role for Tie-2 in inflammatory angiogenesis.  相似文献   

17.
Angiogenesis is a regulated process involving the proliferation, migration, and remodeling of different cell types particularly mature endothelial cells and recently discovered progenitor cells, named as endothelial progenitor cells (EPCs). Up to now, many attempts have been made to understand the dynamic balance of pro- and anti-angiogenic factors on EPCs on different milieu. It has been accepted that Ang-1, -2 and Tie-1, -2 signaling play a key role on angiogenesis pathways in endothelial lineage cells. In the current experiment, the angiogenic/angio-modulatory potency of Ang-1 and -2 was investigated on isolated EPCs. Freshly isolated EPCs were exposed to different concentrations of Ang-1 and -2 (25 and 50?ng/ml) over a course of 7 and 14 days. Corroborating to our results, a superior effect of Ang-1 on angiogenic properties, including an increased concentration of vascular endothelial growth factor, in vitro tubulogenesis, EPC migratory, Tie-2 expression and clonogenicity, was determined. A large amount of positive mature endothelium markers was achieved in EPCs being-exposed to Ang-1 peptide. Nonetheless, the number of CD133 positive cells increased in the presence of Ang-2. Collectively, we conclude that Ang-1 potentially induces functional and mature vascular-like behavior in EPCs more than Ang-2.  相似文献   

18.
Signaling properties of VEGF receptor-1 and -2 homo- and heterodimers   总被引:5,自引:0,他引:5  
Vascular endothelial growth factor (VEGF-A) exerts its effects through receptor tyrosine kinases VEGF receptor-1 (VEGFR-1) and VEGFR-2, which are expressed on most endothelial cell types in vitro and in vivo. We have examined VEGF-A-induced signal transduction in porcine aortic endothelial (PAE) cells individually expressing VEGFR-1 or VEGFR-2, and cells co-expressing both receptor types. We show that VEGF-A-stimulated PAE cells co-expressing VEGFR-1 and -2 contain receptor heterodimers. VEGF-A-stimulation of all three cell lines (expressing VEGFR-1, -2 and -1/2) resulted in signal transduction with different efficiencies. Thus, tyrosine phosphorylation of phospholipase Cgamma, and accumulation of inositol polyphosphates were efficiently transduced in the VEGFR-1/2 cells whereas cells expressing VEGFR-1 responded poorly in these assays. In contrast, VEGF-A-induced activation of phosphoinositide 3-kinase and induction of Ca2+ fluxes were transduced well by VEGFR-1 and VEGFR-2 homo- and heterodimers. The pattern of Ca2+ fluxes was unique for each type of VEGF receptor dimer. Our data show that signal transduction induced by VEGF-A is transduced in distinct manners by homo- and heterodimers of VEGF receptors.  相似文献   

19.
The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1-mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus-induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2(-/-) mice. Intravital microscopy showed normal TNF-alpha-induced leukocyte rolling in the vasculature of Angpt2(-/-)mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-alpha and modulating TNF-alpha-induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号