首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
《Ecological Indicators》2008,8(5):588-598
Indices developed for stream bioassessment are typically based on either fish or macroinvertebrate assemblages. These indices consist of metrics which subsume attributes of various species into aggregate measures reflecting community-level ecological responses to disturbance. However, little is known about the relationship between fish and macroinvertebrate metrics, or about how ecological health assessments are affected by assemblage-specific responses to disturbance. We used principal component analysis (PCA) and regression analysis of existing fish (n = 371) and macroinvertebrate (n = 442) stream bioassessment data from a multi-source dataset to determine broad scale, within-assemblage metric patterns, and to examine the intercorrelation of fish and macroinvertebrate metrics (n = 246) and their response to watershed area and land use/land cover gradients. Fish and macroinvertebrate metrics expressed as principal components (PCs) accounted for 72.4 and 85.4% of dataset variance, respectively, with PC-metric patterns reflecting aspects of stream impairment including water and habitat quality. Model components predicting fish metric response differed among fish PCs, with watershed area and macroinvertebrate metric response strongly correlated with the first fish PC, and remaining fish PC models consisting of watershed area, land use, and macroinvertebrate PCs. Correlation between fish and macroinvertebrate PCs, and models relating fish and macroinvertebrate PCs generally explained less variation (13–27%) than metric response models of fish (25–34%) and macroinvertebrates (8–38%) to watershed area and land use/land cover variables. Best-response models integrating fish and macroinvertebrate PCs, watershed area, and land use/land cover variables accounted for the greatest variation in fish PCs (32–50%) across sites. Because fish and macroinvertebrate metrics provide different information on ecological condition, integrated use of information from multiple groups may be appropriate when developing monitoring programs.  相似文献   

2.
The impacts of watershed urbanization on streams have been studied worldwide, but are rare in China. We examined relationships among watershed land uses and stream physicochemical and biological attributes, impacts of urbanization on overall stream conditions, and the response pattern of macroinvertebrate assemblage metrics to the percent of impervious area (PIA) of watersheds in the middle section of the Qiantang River, Zhejiang Province, China. Environmental variables and benthic macroinvertebrates of 60 stream sites with varied levels of watershed urban land use were sampled in April, 2010. Spearman correlation analysis showed watershed urbanization levels significantly correlated with increased stream depth, width, and values of conductivity, total nitrogen, ammonia, phosphate, calcium, magnesium, and chemical oxygen demand for the study streams. There was significant difference in total taxa richness, Empheroptera, Plecoptera, and Trichoptera (EPT) taxa richness, and Diptera taxa richness, percentages of individual abundances of EPT, Chironomidae, shredders, filterers, and scrapers, and Shannon–Wiener diversity index between reference streams and urban impacted streams. In contrast, percentages of individual abundances for collectors, oligochaeta, and tolerant taxa, and biotic index were significantly higher in urban impacted than reference streams. All the above metrics were significantly correlated with PIA. The response patterns of total taxa richness, EPT taxa richness, and Shannon–Wiener diversity index followed a drastic decrease at thresholds of 3.6, 3.7, and 5.5% of PIA, respectively. Our findings indicate that stream benthic macroinvertebrate metrics are effective indicators of impacts of watershed urban development, and the PIA-imperviousness thresholds we identified could potentially be used for setting benchmarks for watershed development planning and for prioritizing high valued stream systems for protection and rehabilitation.  相似文献   

3.
We developed and validated a single multimetric index based on predictive models that could evaluate anthropogenic disturbances in streams of three disparate ecoregions of Bolivia. To do so, we examined 45 candidate metrics reflecting different aspects of macroinvertebrate assemblage structure and function gleaned from available literature and for their potential to indicate degradation. More importantly, we integrated functional trait metrics to improve the sensitivity of our index. To quantify possible deviation from reference conditions, we first established and validated statistical models describing metric responses to natural environmental differences in the absence of any significant anthropogenic disturbance. We considered that the residual distributions of these models described the response range of each metric, independently of natural environmental influence. After testing the sensitivity of these residuals to a gradient of anthropogenic disturbance, we retained eight metrics that were used in the final assemblage index, four metrics based on richness and composition and four metrics based on biological traits. Our index performed well in discriminating between reference and disturbed sites, giving a significant negative linear response to a gradient of physical and chemical anthropogenic disturbances. After employing a probability survey design and sampling a relatively small number of sites throughout all major ecoregions of Bolivia, we believe our methodology can be used to develop a monitoring tool to evaluate status and trends in biological condition for streams of the entire country despite its complex and heterogeneous geology and climate.  相似文献   

4.
Ian R. Waite 《Hydrobiologia》2014,726(1):285-303
As part of the USGS study of nutrient enrichment of streams in agricultural regions throughout the United States, about 30 sites within each of eight study areas were selected to capture a gradient of nutrient conditions. The objective was to develop watershed disturbance predictive models for macroinvertebrate and algal metrics at national and three regional landscape scales to obtain a better understanding of important explanatory variables. Explanatory variables in models were generated from landscape data, habitat, and chemistry. Instream nutrient concentration and variables assessing the amount of disturbance to the riparian zone (e.g., percent row crops or percent agriculture) were selected as most important explanatory variable in almost all boosted regression tree models regardless of landscape scale or assemblage. Frequently, TN and TP concentration and riparian agricultural land use variables showed a threshold type response at relatively low values to biotic metrics modeled. Some measure of habitat condition was also commonly selected in the final invertebrate models, though the variable(s) varied across regions. Results suggest national models tended to account for more general landscape/climate differences, while regional models incorporated both broad landscape scale and more specific local-scale variables.  相似文献   

5.
张勇  刘朔孺  于海燕  刘东晓  王备新 《生态学报》2012,32(14):4309-4317
溪流底栖动物群落结构受不同空间尺度环境因子的共同作用。基于2010年钱塘江中游流域60个样点的大型底栖无脊椎动物和环境变量数据,寻找与研究流域底栖动物群落结构变化密切相关的关键环境变量,解析流域尺度和河段尺度的环境因子对底栖动物群落的相对影响。PCA分析表明该区域的主要环境梯度是流域内的土地利用类型及其引起的溪流物理生境退化程度和水体营养状态。CCA分析发现影响底栖动物群落的流域尺度的关键环境变量是纬度、海拔、样点所在流域大小、森林用地百分比,河段尺度是总氮、总磷、钙浓度、二氧化硅浓度和平均底质得分。偏CCA分析得到两种尺度环境因子对底栖动物变异的总解释量为26.4%,流域尺度和河段尺度变量分别为总解释量的50%和31%;方差分解结果表明研究区域大型底栖无脊椎动物受到两种尺度环境因子的综合影响,且流域尺度环境因子较河段尺度环境因子更为重要,体现了其在溪流生态系统保护、恢复、监测和评价中的重要参考价值。  相似文献   

6.
Effects of forest management on stream communities have been widely documented, but the role that climate plays in the disturbance outcomes is not understood. In order to determine whether the effect of disturbance from forest management on headwater stream communities varies by climate, we evaluated benthic macroinvertebrate communities in 24 headwater streams that differed in forest management (logged-roaded vs. unlogged-unroaded, hereafter logged and unlogged) within two ecological sub-regions (wet versus dry) within the eastern Cascade Range, Washington, USA. In both ecoregions, total macroinvertebrate density was highest at logged sites (P = 0.001) with gathering-collectors and shredders dominating. Total taxonomic richness and diversity did not differ between ecoregions or forest management types. Shredder densities were positively correlated with total deciduous and Sitka alder (Alnus sinuata) riparian cover. Further, differences in shredder density between logged and unlogged sites were greater in the wet ecoregion (logging × ecoregion interaction; P = 0.006) suggesting that differences in post-logging forest succession between ecoregions were responsible for differences in shredder abundance. Headwater stream benthic community structure was influenced by logging and regional differences in climate. Future development of ecoregional classification models at the subbasin scale, and use of functional metrics in addition to structural metrics, may allow for more accurate assessments of anthropogenic disturbances in mountainous regions where mosaics of localized differences in climate are common.  相似文献   

7.
Macroinvertebrates have a successful history of use as indicators of human impact in lotic environments. More recently, macroinvertebrate indices have been recommended for use in certain wetland types. Yet some authors do not recommend macroinvertebrates indices of wetland condition in areas with pronounced natural environmental heterogeneity. Our study provides a preliminary assessment of the feasibility of using macroinvertebrates for bioassessment of temporary isolated depression wetlands in the south-western Cape region of South Africa. We expected natural environmental heterogeneity among wetlands to exert a stronger influence on macroinvertebrates than human disturbance factors. Partitioning of the variation in macroinvertebrate assemblage composition that could be attributed to human disturbance factors (within and adjacent to wetlands), environmental variables and spatio-temporal factors indicated that environmental and spatio-temporal factors independent of human disturbances largely determined assemblage composition, whilst human disturbance played a relatively minor role. Linear regressions of taxon richness/diversity measures, individual families and a collation of metrics against measures of habitat transformation around wetlands and scores from a rapid assessment index of human disturbance revealed poor relationships. The univariate and multivariate patterns observed in this study do not lend themselves to the creation of a macroinvertebrate index of human disturbance for temporary wetlands in the region.  相似文献   

8.
9.
The study was carried out from 2007 to 2010 in two ecoregions: the Carpathians and the Central Highlands. The objectives of our survey were to test the existing biological index metric based on benthic macroinvertebrates at reference conditions in the high- and mid-altitude mountain streams of two ecoregions according to the requirements of the EU WFD and to determine which environmental factors influence the distribution of benthic macroinvertebrates. Our results revealed statistically significant differences in the values of the physical and chemical parameters of water as well as the mean values of metrics between the types of streams at the sampling sites. RDA analysis showed that the temperature of the water, pH, conductivity, the stream gradient, values of the HQA index, and altitude were the parameters most associated with the distribution of benthic macroinvertebrate taxa and the values of the metrics. The values of biological indices should be considered according to the stream typology including altitude and geology. At the reference conditions, the suggested border values of biological indices are very harsh. The values of the biological indices of most sampling sites did not correspond to the requirements of the high status in rivers. The streams at altitudes above 1,200 m a.s.l. should be treated as another river type and new reference values should be established.  相似文献   

10.
Spatial processes are increasingly associated with species distributions in freshwaters. However, these processes are usually neglected in bioassessment techniques, which may introduce uncontrolled variation in ecological indicators used to express human disturbance. We used partial linear regression to quantify the relative importance of natural variables, human disturbance and spatial variables in structuring variation in boreal lake status indicators based on six biological indicator groups (phytoplankton, macrophytes, diatoms, littoral and profundal macroinvertebrates and fish). We found that, of the pure fractions, human disturbance explained most variation (7–32%) of the ecological quality ratios (EQRs) for all groups, with the exception of littoral macroinvertebrate metric, which was most controlled by natural and spatial variables (15% and 16%, respectively). In addition, pure fractions of natural and spatial variables and joint fractions of different explanatory variable groups structured all biological metrics to various degrees. Phytoplankton, diatom and profundal macroinvertebrate EQRs responded purest to human disturbance but only weakly to pure natural or spatial variation. Our work demonstrates that spatial processes and spatial structuring of the environment can bias bioassessment techniques and hinder the detection of human impact. Thus, it is important to acknowledge spatial autocorrelation, context of metacommunity dynamics, species dispersal traits and variable spatial extent when defining reference conditions and bioassessment techniques for different biological groups. More research is needed to better understand the relative role of spatial processes on ecological metrics originated from different freshwater ecosystems. To this end, our work provides an example of how sources of variation can be identified to increase accuracy in freshwater bioassessment.  相似文献   

11.
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.  相似文献   

12.
For lake characterisation, top-down typologies are mostly used throughout Europe, including type criteria such as climate, lake area, catchment geology and conductivity. In Germany, a lake typology was applied comprising ecoregion, calcium concentration, Schindler’s ratio, stratification type and residence time. However, the relevance of these criteria for the macroinvertebrate fauna has not been conclusively demonstrated till now. Benthic invertebrate community data and related environmental parameters of pristine or near-pristine lakes in Germany were analysed by multivariate analysis techniques to elucidate which environmental parameters are reflected by invertebrate composition. Moreover, benthic invertebrate data were transformed to metrics expressing ecological attributes and species richness (summarising functional composition, diversity and sensitivity measures). Multivariate statistics were used to test whether information relevant to ordination was lost and whether variation decreases using metrics which combine data with ecological attributes. Analysis of lake-type criteria revealed that ecoregions and prevailing substrates were characterized by different taxonomic compositions of macroinvertebrates. In addition, a relationship was found between community composition and lake size. Creating a novel bottom-up lake typology based on ecoregions, lake size and prevailing substrate gives better separation of distinct macroinvertebrate communities and a higher level of homogeneity within groups compared to top-down typology or single environmental parameters alone, both on species and metrics data. Despite some data variation due to methodological differences (e.g. different sampling and sorting techniques) and interannual and seasonal variation in the data set, NMDS ordination presented well-separated groups of bottom-up lake types. Lake types were more precisely separated by species data than by metric data in both top-down and bottom-up typology. However, as information loss from species lists to calculated metrics is marginal, type-specific benthic invertebrate assemblages are reflected both on the species level and on the metric level. Species and metric data are both suitable for data ordination, while single environmental parameters affecting macroinvertebrate composition can best be obtained using metrics.  相似文献   

13.
Inorganic sediments of terrestrial origin may impact stream macroinvertebrate communities. Although input of terrestrial sediments to streams may occur naturally, human-induced activities in the catchment amplify this input greatly. We used an in-stream experiment to investigate whether short-term additions of terrestrial sediments of two size classes affected stream macroinvertebrates. The experiment was designed in blocks to minimize the influence of flow velocity and other environmental variables. Four treatments were employed: (i) addition of fine sand (0–0.24 mm), (ii) coarse sand (0.25–0.8 mm), (iii) fine+coarse sand, and (iv) control (water only). Macroinvertebrates were sampled immediately after the addition of sediments (or water). The experiment consisted of 20 blocks. We analyzed the response of the macroinvertebrate fauna in terms of abundance and species richness. Since species richness is strongly dependent on number of individuals sampled, we also analyzed rarefied species richness. Community structure was evaluated using a distance-based Manova on presence/absence and abundance data. The addition of coarse and fine+coarse sand reduced the abundance and species richness of macroinvertebrates in relation to the control. The response in terms of rarefied species richness in the treatments did not differ from the control, indicating that reduction in species richness was a sampling artifact resulting from decreased sample abundance. The Manova analyses indicated that coarse-sand addition caused changes in both species composition and community structure. Addition of fine and fine+coarse sand affected only slightly species composition and community structure. We concluded that even short-term input of terrestrial sediments causes impacts on benthic macroinvertebrates, and recommend that land-use management of tropical catchments should employ practices that reduce input of terrestrial sediments to streams. Handling editor: K. Martens  相似文献   

14.
1. Stream and riparian ecosystems in arid montane areas, like the interior western United States, are often just narrow mesic strands, but support diverse and productive habitats. Meadows along many such streams have long been used for rangeland grazing, and, while impacts to riparian areas are relatively well known, the effect of livestock grazing on aquatic life in streams has received less attention. 2. Attempts to link grazing impacts to disturbance have been hindered by the lack of spatial and temporal replication. In this study, we compared channel features and benthic macroinvertebrate communities (i) between 16 stream reaches on two grazed allotments and between 22 reaches on two allotments where livestock had been completely removed for 4 years, (ii) before and after the 4‐year grazing respite at a subset of eight sites and (iii) inside and outside of small‐scale fenced grazing exclosures (eight pairings; 10+ year exclosures) in the meadows of the Golden Trout Wilderness, California (U.S.A.). 3. We evaluated grazing disturbance at the reach scale in terms of the effects of livestock trampling on per cent bank erosion and found that macroinvertebrate richness metrics were negatively correlated with bank erosion, while the percentage of tolerant taxa increased. 4. All macroinvertebrate richness metrics were significantly lower in grazed areas. Bank angle, temperature, fine sediment cover and erosion were higher in grazed areas, while riparian cover was lower. Regression models identified riparian cover, in‐stream substratum, bank conditions and bankfull width‐to‐depth ratios as the most important for explaining variability in macroinvertebrate richness metrics. 5. Small‐scale grazing exclosures showed no improvements for in‐stream communities and only moderate positive effects on riparian vegetation. In contrast, metrics of macroinvertebrate richness increased significantly after a 4‐year period of no grazing. 6. The success of grazing removal reported here suggests that short‐term removal of livestock at the larger, allotment meadow spatial scale is more effective than long‐term, but small‐scale, local riparian area fencing, and yields promising results in achieving stream channel, riparian and aquatic biological recovery.  相似文献   

15.
The lack of biological systems for the assessment of ecological quality specific to mountain ponds prevents the effective management of these natural resources. In this article we develop an index based on macroinvertebrates sensitive to the gradient of nutrient enrichment. With this aim, we sampled 31 ponds along a gradient of trophy and with similar geomorphological characteristics and watershed use in protected areas of the central Apennines. A bioassessment protocol was adopted to collect and process benthic samples and key-associated physical, chemical, and biological variables during the summer growth season of 1998. We collected 61 genera of macroinvertebrates belonging to 31 families. We calculated 31 macroinvertebrate metrics based on selected and total taxa richness, richness of some key groups, abundance, functional groups and tolerance to organic pollution. The gradient of trophy was quantified with summer concentrations of chlorophyll a. We followed a stepwise procedure to evaluate the effectiveness of a given metric for use in the multimetric index. Those were the pollution tolerance metric ASPT, three metrics based on taxonomic richness (the richness of macroinvertebrate genera, the richness of chironomid taxa, and the percentage of total richness composed by Ephemeroptera, Odonata, and Trichoptera), two metrics based on FFG attributes (richness of collector gatherer taxa and richness of scraper taxa) and the habit-based metric richness of burrowers. The 95th percentile of each metric distribution among all ponds was trisected for metric scoring. The final Pond Macroinvertebrate Integrity Index ranged from 7 to 35 and had a good correlation (R 2 = 0.71) with the original gradient of environmental degradation. Guest editors: R. Céréghino, J. Biggs, B. Oertli & S. Declerck The ecology of European ponds: defining the characteristics of a neglected freshwater habitat  相似文献   

16.
Hydraulic-habitat and biological data were integrated within a twofold-purpose study: (i) to investigate the response of freshwater macroinvertebrates to a rainfall-induced high flow event of moderate magnitude and (ii) to derive hydroecological relationships between habitat variability and macroinvertebrate microdistribution. 142 microhabitats (unique combinations of flow velocity, water depth and substrate type) allocated in four sites of no or very minor anthropogenic influence were sampled and analyzed, before and after the event. Freshwater macroinvertebrates were additionally collected and specific community metrics were derived. To identify possible pre- and post- impact benthic community differences, independent sample t-tests were applied, while Boosted Regression Tree models were developed to quantify the response of macroinvertebrates to flow alteration. Macroinvertebrate abundance, taxonomic richness, EPT richness and diversity decreased significantly by 90%, 60%, 50% and 25% respectively between the pre- and post- impact microhabitats. The relative abundance of macroinvertebrate predators and passive filter feeders increased after the event, mainly in specific substrate types (boulders and large stones), which served as flow refugia, maintaining less degraded (compared to finer substrates), still heavily impacted, benthic communities. According to the hydroecological analysis, the high flow event exerted the strongest impact on all macroinvertebrate metrics. Optimal (suitable) ranges of the hydraulic-habitat variables for benthic macroinvertebrates were identified (optimal flow velocity from 0.3 m/s to 0.7 m/s, optimal water depth at 0.2 m), while boulders and large stones were the most suitable substrate types. The aforementioned data provide valuable information for the provisioning of biologically-derived environmental flows and an essential input of hydrodynamic habitat models to facilitate the selection of the optimal environmental flow scenario towards ensuring the integrity of aquatic ecosystems downstream of anthropogenic activities provoking hydrological alteration.  相似文献   

17.
18.
Invasive alien organisms can impact adversely on indigenous biodiversity, while riparian invasive alien trees (IATs), through shading of the habitat, can be a key threat to stream invertebrates. We ask here whether stream fauna can recover when the key threat of riparian IATs is removed. Specifically, we address whether IAT invasion, and subsequent IAT removal, changes benthic macroinvertebrate and adult dragonfly assemblages, for the worse or for the better respectively. Natural riparian zones were controls. There were statistically significant differences between stream reaches with natural, IAT-infested and IAT-cleared riparian vegetation types, based on several metrics: immature macroinvertebrate taxon richness, average score per macroinvertebrate taxon (ASPT), a macroinvertebrate subset (Ephemeroptera, Plecoptera, Trichoptera and Odonata larvae; EPTO), and adult dragonfly species richness. Reaches with natural vegetation, or cleared of IATs, supported greater relative diversity of macroinvertebrates than reaches shaded by dense IATs. Greatest macroinvertebrate ASPT and EPTO were in reaches bordered by natural vegetation and those bordered by vegetation cleared of IATs, and the lowest where the riparian corridor was IATs. Highest number of adult dragonflies species was along streams cleared of dense IATs. Overall, results showed that removal of a highly invasive, dense canopy of alien trees enables recovery of aquatic biodiversity. As benthic macroinvertebrate scores and adult dragonfly species richness are correlated and additive, their combined use is recommended for river condition assessments.  相似文献   

19.
The EU Water Framework Directive requires European Union Member States to establish ‘type-specific biological reference conditions’ for streams and rivers. Types can be defined by using either a fixed typology (System-A), defined by ecoregions and categories of altitude, catchment area and geology, or by means of an alternative characterisation (System-B) that can use a variety of physical and chemical factors. Several European countries also have existing RIVPACS-type models that give site (rather than stream type) specific predictions of benthic macroinvertebrate communities. In this paper we compare the Water Framework Directive (WFD) System-A physical typology and three existing European multivariate RIVPACS-type models as alternative methods of establishing reference conditions. This work is carried out in Great Britain – using RIVPACS, Sweden – using SWEPACSRI and the Czech Republic – using PERLA. We found that in all three countries, all seasons and season combinations, and for all biotic indices tested, RIVPACS-type models were more effective (lower standard deviations of O/E ratios) than models based solely on the WFD System-A variables or null models (based on a single expectation for all sites). We also investigated the explanatory power of whole groups of WFD System-A variables and RIVPACS-type model variables, and the explanatory power of individual variables. We found that variables used in the RIVPACS-type models were often better correlates of macroinvertebrate community variation than the WFD System-A variables. We conclude that this is primarily because while the latter use very broad categories of map-derived variables, the former are based on continuous variables selected for their ecological significance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号