首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
4.
In suspension-cultured rice ( Oryza sativaL.) cells, jasmonic acid (JA) functions as a signal transducer in elicitor N-acetylchitoheptaose-induced phytoalexin production. Differential screening of a cDNA library constructed using poly(A)(+) RNA from suspension-cultured rice cells treated with JA (10(-4) M) for 2 h yielded a cDNA for a gene that responded to exogenous JA by an increase in mRNA level. Nucleotide sequence analysis indicated that the cDNA encodes an homologue of the yeast Old Yellow Enzyme. The deduced amino acid sequence was very similar to the sequences of 12-oxophytodienoic acid reductases (OPR) 1 and 2 from Arabidopsis thaliana(AtOPR1 and AtOPR2) and OPR1 from tomato ( Lycopersicon esculentum) (LeOPR1). The cDNA-encoded protein purified from recombinant Escherichia coli cells as a hexahistidine-tagged fusion protein exhibited OPR activity similar to that of AtOPR1, AtOPR2, and LeOPR1, which catalyze reduction of (-)- cis-12-oxophytodienoic acid (OPDA) preferentially over (+)- cis-OPDA, a natural precursor of JA. Thus the rice enzyme was termed OsOPR1. The physiological roles of OsOPR1 are discussed. This is the first report of the cloning of an OPR gene from a monocot plant.  相似文献   

5.
Two cDNA clones for jasmonic acid (JA)-responsive genes, RRJ1 and RRJ2, were isolated by differential screening from suspension-cultured rice cells treated with JA for 2 h. The putative RRJ1 protein is completely identical to that of a putative rice cystathionine gamma-lyase, while the putative RRJ2 protein is highly similar in sequence to a rice pyruvate decarboxylase, PDC1.  相似文献   

6.
Two cDNA clones for jasmonic acid (JA)-responsive genes, RRJ1 and RRJ2, were isolated by differential screening from suspension-cultured rice cells treated with JA for 2 h. The putative RRJ1 protein is completely identical to that of a putative rice cystathionine γ-lyase, while the putative RRJ2 protein is highly similar in sequence to a rice pyruvate decarboxylase, PDC1.  相似文献   

7.
In our search to identify gene(s) involved in the rice self-defense responses, we cloned a novel rice ( Oryza sativa L. cv. Nipponbare) gene, OsATX , a single copy gene, from the JA treated rice seedling leaves cDNA library. This gene encodes a 69 amino acid polypeptide with a predicted molecular mass of 7649.7 and a pI of 5.6. OsATX was responsive to cutting (wounding by cutting the excised leaf), over its weak constitutive expression in the healthy leaves. The critical signalling molecules, jasmonic acid (JA), salicylic acid (SA), abscisic acid (ABA), and hydrogen peroxide, together with protein phosphatase inhibitors, effectively up-regulated the OsATX expression with time, over the excised leaf cut control, whereas ethylene had no affect. Furthermore, copper, a heavy metal, also up-regulated OsATX expression. Moreover, induced expression of OsATX mRNA was influenced by light signal(s), and showed a requirement for de novo synthesized protein factors. Additionally, co-application of either JA or ABA with SA drastically suppressed the induced OsATX mRNA level. Finally, the blast pathogen, Magnaporthe grisea , triggered OsATX mRNA accumulation. These results strongly suggest a function/role(s) for OsATX in defense/stress responses in rice.  相似文献   

8.
9.
10.
The reaction of the rice mutant HEBIBA differs from that of wild-type rice in that the mutant responds inversely to red light and is defective in the light-triggered biosynthesis of jasmonic acid (JA). Using the wild type and the HEBIBA mutant of rice in a differential display screen, we attempted to identify genes that act in or near the convergence point of light and JA signalling. We isolated specifically regulated DNA fragments from approximately 10 000 displayed bands, and identified a new early light- and JA-induced gene. This gene encodes an enzyme containing a GDSL motif, showing 38 % identity at the amino acid level to lipase Arab-1 in Arabidopsis thaliana. The GDSL CONTAINING ENZYME RICE 1 gene (GER1) is rapidly induced by both red (R) and far-red (FR) light and by JA. The results are discussed with respect to a possible role for GER1 as a negative regulator of coleoptile elongation in the context of recent findings on the impact of JA on light signalling.  相似文献   

11.
Suppressors produced by Mycosphaerella pinodes are glycopeptides to block pea defense responses induced by elicitors. A clone, S64, was isolated as cDNA for suppressor-inducible gene from pea epicotyls. The treatment of pea epicotyls with suppressor alone induced an increase of S64 mRNA within 1 h, and it reached a maximum level at 3 h after treatment. The induction was not affected by application of the elicitor, indicating that the suppressor has a dominant action to regulate S64 gene expression. S64 was also induced by inoculation with a virulent pathogen, M. pinodes, but not by inoculation with a non-pathogen, Ascochyta rabiei, nor by treatment with fungal elicitor. The deduced structure of S64 showed high homology to 12-oxophytodienoic acid reductase (OPR) in Arabidopsis thaliana. A recombinant protein derived from S64 had OPR activity, suggesting compatibility-specific activation of the octadecanoid pathway in plants. Treatment with jasmonic acid (JA) or methyl jasmonic acid, end products of the octadecanoid pathway, inhibited the elicitor-induced accumulation of PAL mRNA in pea. These results indicate that the suppressor-induced S64 gene expression leads to the production of JA or related compounds, which might contribute to the establishment of compatibility by inhibiting the phenylpropanoid biosynthetic pathway.  相似文献   

12.
Plant roots have important roles not only in absorption of water and nutrients, but also in stress tolerance such as desiccation, salt, and low temperature. We have investigated stress-response proteins from rice roots using 2-dimensional polyacrylamide-gel electrophoresis and found a rice protein, RO-292, which was induced specifically in roots when 2-week-old rice seedlings were subjected to salt and drought stress. The full-length RO-292 cDNA was cloned, and was determined to encode a protein of 160 amino acid residues (16.9 kDa, pI 4.74). The deduced amino acid sequence showed high similarity to known rice PR10 proteins, OsPR10a/PBZ1 and OsPR10b. RO-292 mRNA accumulated rapidly upon drought, NaCl, jasmonic acid and probenazole, but not by exposure to low temperature or by abscisic acid and salicylic acid. The RO-292 gene was also up-regulated by infection with rice blast fungus. Interestingly, induction was observed almost exclusively in roots, thus we named the gene RSOsPR10 (root specific rice PR10). The present results indicate that RSOsPR10 is a novel rice PR10 protein, which is rapidly induced in roots by salt, drought stresses and blast fungus infection possibly through activation of the jasmonic acid signaling pathway, but not the abscisic acid and salicylic acid signaling pathway.  相似文献   

13.
The possible role of the octadecanoid signaling pathway with jasmonic acid (JA) as the central component in defense-gene regulation of pathogen-attacked rice was studied. Rice (Oryza sativa L.) seedlings were treated with JA or inoculated with the rice blast fungus Magnaporthe grisea (Hebert) Barr., and gene-expression patterns were compared between the two treatments. JA application induced the accumulation of a number of pathogenesis-related (PR) gene products at the mRNA and protein levels, but pathogen attack did not enhance the levels of (-)-JA during the time required for PR gene expression. Pathogen-induced accumulation of PR1-like proteins was reduced in plants treated with tetcyclacis, a novel inhibitor of jasmonate biosynthesis. There was an additive and negative interaction between JA and an elicitor from M. grisea with respect to induction of PR1-like proteins and of an abundant JA-and wound-induced protein of 26 kD, respectively. Finally, activation of the octadecanoid signaling pathway and induction of a number of PR genes by exogenous application of JA did not confer local acquired resistance to rice. The data suggest that accumulation of nonconjugated (-)-JA is not necessary for induction of PR genes and that JA does not orchestrate localized defense responses in pathogen-attacked rice. Instead, JA appears to be embedded in a signaling network with another pathogen-induced pathway(s) and may be required at a certain minimal level for induction of some PR genes.  相似文献   

14.
We have isolated and characterized a rice isoflavone reductase-like gene, OsIRL, whose expression is induced by a fungal elicitor. The OsIRL cDNA contains 1203 bp with an open reading frame of 942 nucleotides encoding 314 amino acids. The deduced amino acid sequence of OsIRL has a putative pyridine nucleotide binding domain and is 68% homologous with the maize isoflavone reductase-like gene. Southern blot analysis revealed that OsIRL belongs to a small multigene family. Expression of OsIRL was induced by treatment with a fungal elicitor and jasmonic acid as well as by inoculation with rice blast fungus. Cycloheximide (1 microM), strongly inhibited the induction of OsIRL by the fungal elicitor, indicating that new protein synthesis is required. The protein kinase inhibitor, staurosporine (1 microM), had little effect, but the phosphatase inhibitor, calyculin A (1 microM), strongly inhibited induction. Treatment with salicylic acid (SA, 5 mM) strongly inhibited expression of OsIRL in response to fungal elicitor and JA, while abscisic acid (ABA, 200 microM) also strongly antagonized OsIRL induction by JA, but had only a weak effect on induction by the fungal elicitor. These results suggest that the expression of OsIRL is positively regulated by phytohormones such as JA, and negatively by phytohormones such as SA, ABA.  相似文献   

15.
16.
Molecular characterization of L2 lipoxygenase from maize embryos   总被引:5,自引:0,他引:5  
We investigated the expression and accumulation pattern of lipoxygenaseisoforms throughout the maize plant life. Two forms of lipoxygenase L1and L2 have been identified as acidic proteins of 100 kDa (pI 6.4) and90 kDa (pI 5.5-5.7) which accumulate in dry embryos and in variousorgans of maize seedlings. In young embryos, only the L2 form wasdetected and accumulation of L2 mRNA decreased during embryodevelopment. Identification of lipoxygenases from in vivo and in vitro synthesized proteins indicates that similar levels of both L1and L2 forms accumulated during treatment with abscisic acid, (ABA)gibberellic acid (GA3) and jasmonic acid (JA). However,differences in the activity of both enzymes were detected. By using anantiserum directed against purified L2 we isolated and characterized apartial cDNA clone of maize embryos encoding a lipoxygenase. The deducedamino acid sequence of L2 cDNA shares 78% identity with the rice L2protein, and 51-56% identity with lipoxygenases from thedicotyledonous plants soybean and Arabidopsis/. DNA blotanalysis indicated that maize contains a family of lipoxygenase geneswhich are presently being characterized.  相似文献   

17.
冬小麦丙二烯氧化合酶基因(TaAOS)的克隆及其特性   总被引:1,自引:0,他引:1  
丙二烯氧化合酶(allene oxide synthase,AOS)是茉莉酸脂加氧酶合成途径过程中的第一个酶.从冬小麦(Triticum aestivum L. cv.Jinghua No.3)克隆到了该酶的一个全长cDNA片段,其开放阅读框长约1 410 bp,编码一约含470个氨基酸残基的多肽,推测其分子量为51.9 kD.Southern分析显示其在基因组中以3个拷贝的形式存在.Northern杂交分析表明该基因表达可被外源的茉莉酸诱导,诱导10 h时达到高峰,进一步的RNA原位杂交表明该基因优先在幼叶中,尤其是在维管束附近的薄壁细胞中表达.同时,原位杂交还显示质膜钙通道的抑制剂La3 并不能抑制外源茉莉酸诱导该区域TaAOS的表达.  相似文献   

18.
19.
20.
We report isolation of two novel rice (Oryza sativa L.) mitogen-activated protein kinases (MAPKs), OsMSRMK3 (multiple stress responsive) and OsWJUMK1 (wound- and JA-uninducible) that most likely exist as single copy genes in its genome. OsMSRMK3 and OsWJUMK1 encode 369 and 569 amino acid polypeptides having the MAPK family signature and phosphorylation activation motifs TEY and TDY, respectively. Steady state mRNA analyses of these MAPKs with constitutive expression in leaves of two-week-old seedlings revealed that OsMSRMK3 was up-regulated upon wounding (by cut), jasmonic acid (JA), salicylic acid (SA), ethylene, abscisic acid, hydrogen peroxide (H(2)O(2)), protein phosphatase inhibitors, chitosan, high salt/sugar, and heavy metals, whereas OsWJUMK1 not induced by either wounding, JA or SA, showed up-regulation only by H(2)O(2), heavy metals, and cold stress (12 degrees C). Moreover, these MAPKs were developmentally regulated. These results strongly suggest a role for OsMSRMK3 and OsWJUMK1 in both stress-signalling pathways and development in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号