首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.  相似文献   

2.
Inhibiting ErbB2 signaling with monoclonal antibodies (mAbs) or small molecules is an established therapeutic strategy in oncology. We have developed anti-ErbB2 Dual Variable Domain Immunoglobulin (DVD-Ig) proteins that capture the function of a combination of two anti-ErbB2 antibodies. In addition, some of the anti-ErbB2 DVD-Ig proteins gain the new functions of enhancing ErbB2 signaling and cell proliferation in N87 cells. We further found that two DVD-Ig proteins, DVD687 and DVD688, have two distinct mechanisms of actions in Calu-3 and N87 cells. DVD687 enhances cell cycle progression while DVD688 induces apoptosis in N87 cells. Using a half DVD687, we found that avidity may play a key role in the agonist activity of DVD687 in N87 cells.  相似文献   

3.
Signal transduction through the interleukin-1 receptor (IL-1R) pathway mediates a strong pro-inflammatory response, which contributes to a number of human diseases such as rheumatoid arthritis. Within the IL-1 family, IL-1α and IL-1β are both agonistic ligands for IL-1R, whereas IL-1 receptor antagonist (IL-1ra) is an endogenous antagonist that binds to IL-R, but does not signal. Therefore, the ideal therapeutic strategy would be blocking both IL-1α and IL-1β, but not IL-1ra. However, due to low sequence homology between the three members of the family, it has been exceedingly difficult to identify potent therapeutic agents, e.g., monoclonal antibodies (mAbs), that selectively recognize both IL-1α and IL-1β, but not IL-1ra. Currently, several anti-IL-1 therapeutic agents in clinical development either inhibit only IL-1β (i.e., anti-IL-1β mAb), or recognize all three ligands (i.e., anti-IL-1R mAb or IL-1R Trap). We have recently developed a novel dual variable domain immunoglobulin (or DVD-Ig™) technology that enables engineering the distinct specificities of two mAbs into a single functional, dual-specific, tetravalent IgG-like molecule. Based on this approach, we have developed anti-human IL-1α/β DVD-Ig™ molecules using several pairs of monoclonal antibodies with therapeutic potential, and present a case study for optimal design of a DVD-Ig™ agent for a specific target pair combination.Key words: DVD-Ig, dual variable domain immunoglobulin, interleukin-1, rheumatoid arthritis, variable domain, linker, antibody engineering, dual-specific antibody  相似文献   

4.
The DVD-Ig™ protein is a dual-specific immunoglobulin. Each of the two arms of the molecule contains two variable domains, an inner variable domain and an outer variable domain linked in tandem, each with binding specificity for different targets or epitopes. One area of on-going research involves determining how the proximity of the outer variable domain affects the binding of ligands to the inner variable domain. To explore this area, we prepared a series of DVD-Ig proteins with binding specificities toward TNFα and an alternate therapeutic target. Kinetic measurements of TNFα binding to this series of DVD-Ig proteins were used to probe the effects of variable domain position and linker design on ligand on- and off-rates. We found that affinities for TNFα are generally lower when binding to the inner domain than to the outer domain and that this loss of affinity is primarily due to reduced association rate. This effect could be mitigated, to some degree, by linker design. We show several linker sequences that mitigate inner domain affinity losses in this series of DVD-Ig proteins. Moreover, we show that single chain proteolytic cleavage between the inner and outer domains, or complete outer domain removal, can largely restore inner domain TNFα affinity to that approaching the reference antibody. Taken together, these results suggest that a loss of affinity for inner variable domains in this set of DVD-Ig proteins may be largely driven by simple steric hindrance effects and can be reduced by careful linker design.Key words: dual variable domain immunoglobulin, DVD-Ig, immunotherapy, variable domain, antibody engineering, dual-specific, linker  相似文献   

5.
任斐  成勇  谢庄 《生物技术通讯》2007,18(1):137-139
现已证明,应用抗体治疗疾病是一种非常成功的方法。单克隆抗体的生产使免疫治疗达到一个新水平,但鼠源单抗在治疗人体疾病方面有很多问题,而人源化抗体可以解决这些问题。目前抗体人源化已由鼠嵌合抗体发展到了转基因动物表达完全人抗体阶段,而人类人工染色体(HAC)载体的发展和微细胞介导的转染色体技术使得产生携带人类免疫球蛋白基因位点的转染色体动物成为可能。通过HAC将人的免疫球蛋白基因转入后,这类转染色体动物可以产生大量人源化多克隆抗体,这对预防及治疗疾病,甚至防御生物武器都有很重要的作用。转染色体技术可以使动物携带大而复杂的人类基因或基因簇,这些转基因动物有助于研究人类基因组在体内的功能作用,并用于各种疾病研究和生产药物蛋白。  相似文献   

6.
Polyclonal antibody therapy in the form of hyper-immune serum has for more than a century been used for treatment of many infectious diseases. However, with the emergence of first antibiotics and later recombinant monoclonal antibody therapy, the use of hyper-immune serum has declined. The main reason for this is that methods for consistent manufacturing of safe hyper immune immunoglobulin products have been lacking. In contrast, manufacturing processes of recombinant monoclonal antibodies follow a well established schedule and it appears obvious to use similar methods to produce recombinant polyclonal products. However, the methods for monoclonal antibody manufacturing are, for several reasons, not directly applicable to generation and manufacture of polyclonal recombinant antibodies. A new production strategy based on recombinant mammalian producer cells has recently been developed to support consistent generation of recombinant polyclonal antibodies for therapeutic use. This review describes aspects of this novel technology with emphasis on the generation, production and characterization procedures employed, and provides comparison with alternative polyclonal and monoclonal antibody manufacturing strategies.  相似文献   

7.
Since the first monoclonal antibody, muromonab-CD3, was approved for therapeutic use in 1986, numerous molecules have been targeted using therapeutic antibody technology, resulting in 26 therapeutic antibodies being approved by the US FDA as of November, 2009. Initial concerns regarding antibody drugs focused on immunogenicity, short serum half-life, and weak efficacy. As the types of antibodies progressed from murine to chimeric, humanized, and fully human antibodies, great progress has been made in immunogenicity and in vivo instability issues. For example, humanized antibodies, such as bevacizumab, exhibit less than 0.2% immunogenicity and a 20 day serum half-life, which is comparable to native immunoglobulin. Some recently developed antibodies are exceedingly efficacious and have become first-line therapy for their target diseases. Here, we address and analyze all clinically approved therapeutic antibodies to date by discussing immunogenicity, half-life, and efficacy.  相似文献   

8.
《MABS-AUSTIN》2013,5(5):487-494
The DVD-IgTM protein is a dual-specific immunoglobulin. Each of the two arms of the molecule contains two variable domains, an inner variable domain and an outer variable domain linked in tandem, each with binding specificity for different targets or epitopes. One area of on-going research involves determining how the proximity of the outer variable domain affects the binding of ligands to the inner variable domain. To explore this area, we prepared a series of DVD-Ig proteins with binding specificities toward TNFα and an alternate therapeutic target. Kinetic measurements of TNFα binding to this series of DVD-Ig proteins were used to probe the effects of variable domain position and linker design on ligand on- and off-rates. We found that affinities for TNFα are generally lower when binding to the inner domain than to the outer domain and that this loss of affinity is primarily due to reduced association rate. This effect could be mitigated, to some degree, by linker design. We show several linker sequences that mitigate inner domain affinity losses in this series of DVD-Ig proteins. Moreover, we show that single chain proteolytic cleavage between the inner and outer domains, or complete outer domain removal, can largely restore inner domain TNFα affinity to that approaching the reference antibody. Taken together, these results suggest that a loss of affinity for inner variable domains in this set of DVD-Ig proteins may be largely driven by simple steric hindrance effects and can be reduced by careful linker design.  相似文献   

9.
Epidermal growth factor receptor (EGFR) and receptor tyrosine-protein kinase 3 (ErbB3) are two well-established targets in cancer therapy. There is significant crosstalk among these two receptors and others. To block signaling from both EGFR and ErbB3, we generated anti-EGFR and anti-ErbB3 DVD-Ig proteins. Two DVD-Ig proteins maintained the functions of the combination of the two parental antibodies. The DVD-Ig proteins inhibit cell signaling and proliferation in A431 and FaDu cells while half DVD-Ig proteins lost proliferation inhibition function. Interestingly, in the presence of β-Heregulin (HRG), the DVD-Ig proteins show synergies with respect to inhibiting cell proliferation. The DVD-Ig proteins downregulate EGFR protein expression in the presence of HRG, which may be due to receptor internalization. Furthermore, the DVD-Ig proteins remarkably disrupt β-Heregulin binding to FaDu cells.  相似文献   

10.
Direct cDNA cloning of the rearranged immunoglobulin variable region   总被引:7,自引:0,他引:7  
A major problem in the study of multigene families is the effort required to clone and sequence these genes. We describe a method to rapidly clone and sequence immunoglobulin variable region gene sequences without constructing cDNA libraries. Because immunoglobulin variable-region genes are flanked by conserved sequences, we have been able to apply the polymerase chain reaction (PCR) to clone and sequence both the light- and heavy-chain rearranged immunoglobulin genes from small numbers of hybridoma cells. This method will greatly facilitate the construction of chimeric mouse/human monoclonal antibodies for immunoglobulin structural studies as well as for therapeutic use.  相似文献   

11.
A system for quantitative determinations of human thyroid peroxidase (TPO) in biological fluids has been obtained, based on the use of enzyme-linked immunosorbent assay. Immunochemical properties of TPO were studied under variable conditions, and a new method for isolating the protein from microsomes, mitochondria, and cytosol of thyroid glands of patients with diverse thyroid diseases was developed. The procedure involves solubilization of subcellular fractions with detergents, their sonication, two sequential runs of chromatography (on sorbents with immolbilized monoclonal antibodies against TPO and goat anti-human immunoglobulin antibodies), treatment with ribonuclease, and dialysis. Highly purified preparations of intact TPO and a product of its limited trypsinolysis are expected to be used as research tools and components of high-sensitivity immunoassays.  相似文献   

12.
A system for quantitative determinations of human thyroid peroxidase (TPO) in biological fluids has been obtained, based on the use of enzyme-linked immunosorbent assay. The immunochemical properties of TPO were studied under variable conditions and a new method for isolating the protein from the microsomes, mitochondria, and cytosol of thyroid glands of patients with diverse thyroid diseases was developed. The procedure involves solubilization of subcellular fractions with detergents, their sonication, two sequential runs of chromatography (on sorbents with immobilized monoclonal antibodies against TPO and goat anti-human immunoglobulin antibodies), treatment with ribonuclease, and dialysis. Highly purified preparations of intact TPO and a product of its limited trypsinolysis are expected to be used as research tools and components of high-sensitivity immunoassays.  相似文献   

13.
Immunohistochemistry on mouse tissue utilizing mouse monoclonal antibodies presents a challenge. Secondary antibodies directed against the mouse monoclonal primary antibody of interest will also detect endogenous mouse immunoglobulin in the tissue. This can lead to significant spurious staining. Therefore, a “mouse-on-mouse” staining strategy is needed to yield credible data. This paper presents a method that is easy to use and highly flexible to accommodate both an avidin-biotin detection system as well as a biotin-free polymer detection system. The mouse primary antibody is first combined with an Fab fragment of an anti-mouse antibody in a tube and allowed sufficient time to form an antibody complex. Any non-complexed secondary antibody is bound up with mouse serum. The mixture is then applied to the tissue. The flexibility of this method is confirmed with the use of different anti-mouse antibodies followed by a variety of detection reagents. These techniques can be used for immunohistochemistry (IHC), immunofluorescence (IF), as well as staining with multiple primary antibodies. This method has also been adapted to other models, such as using human antibodies on human tissue and using multiple rabbit antibodies in dual immunofluorescence.  相似文献   

14.
Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrP(Sc), have much higher beta-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrP9Sc) is poorly understood. To date, it has been impossible to elicit antibodies to native PrP(Sc) that are capable of recognizing PrP(Sc) without denaturation, even in Pm-P(o/o) mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrP(Sc) can be produced by immunization of Pm-P(o/o) mice with partially purified PrPc and PrP(Sc) adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrP(Sc) was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrP(c) or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrP(Sc) elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.  相似文献   

15.
Immunoglobulins are tetrameric molecules consisting of two heavy and two light chains linked by disulfide bonds. Single light chains are normally secreted in the plasma under soluble form. These immunoglobulin free light chains circulating in the blood may hold unexpected roles in diseases.Minimal change disease is defined as a renal disease with massive proteinuria and no obvious damage on light microscopy. We hypothesize that minimal change disease is not a primary renal disease but an immune disease due to a defect in B cells mediated by a special immunoglobulin chain. The efficiency of drugs targeting the immune system and the association to Hodgkin disease as well as: (1) the efficiency of B cell depletion to prevent relapse; (2) the association with B leukemia; and (3) the activation of CD23 during relapse point up a primary involvement of B cells. We hypothesize that an immunoglobulin chain with special polymorphism might be the link between the immune system and the dysfunction of the glomerular wall while immunoglobulin depletion leads to a transient remission of proteinuria in graft recurrence of the disease and nephropathy mediated by a monoclonal immunoglobulin chain may feature minimal change disease.Other diseases where free light chains may be involved include atopy, thromboembolism, glomerular inflammatory diseases and autoimmune diseases. We conclude that free circulating light chains, through infinite possibilities of polymorphisms determined by the variable domain are potential disturbing agents of many biological cascades or structures and could likely play the first role in multiple diseases.  相似文献   

16.
Summary The object of our current investigations is to explore the potential of antibodies for localisation and treatment of disseminated disease, using as a model rat monoclonal antibodies (mAbs) raised against syngeneic tumourspecific antigens. As part of this study, antibodies of differing isotypes with specificity for either HSN or MC24 sarcoma were labelled with125iodine and injected intravenously into normal rats or those bearing paired tumours in contralateral flanks. The blood clearance rates of the radiolabelled antibodies were found to be influenced by immunoglobulin subclass (IgG2b > IgG2a > IgG1) and to be increased non-specifically by the presence of growing tumours. The tumour and normal tissue distributions of the antibodies tested were also found to vary according to their apparent degree of interaction with host Fc-receptor-bearing cells, to the extent that tumour specificity in vitro was not necessarily reflected in selectivity of localisation in vivo. Three IgG2b monoclonal antibodies showed preferential uptake in the spleens of syngeneic rats and non-specific accumulation in tumours. This effect was not observed with antibodies of IgG2a or IgG1 subclass, and was abolished by the use of IgG2b F(ab)2 preparations. In spite of the use of immunoglobulin fragments, varying the assay time and testing tumours of different sizes, specific tumour localisation was low with all seven monoclonal antibodies tested. The maximum uptake achieved was less than 1% of the injected dose of antibody per gram of tumour. Much higher levels of antibody localisation have been reported for human tumour xenografts growing in nude mice, but these are rarely achieved in other systems. We propose that the use of autologous monoclonal antibodies recognising tumour-associated antigens of relatively low epitope density in syngeneic hosts provides a valid alternative model in which to investigate the factors limiting more effective, specific immunolocalisation of malignant disease.  相似文献   

17.
Hitherto anti-CEA monoclonal antibodies (MAbs), normally of mouse origin, have been used primarily for clinical diagnosis of colorectal cancer, either as a tumor marker in serum to monitor tumor recurrence, or latterly as a means to localize in vivo CEA-bearing tumors, and metastases in patients. In vivo diagnosis using mouse anti-CEA MAbs has so far had limited clinical utility because the antibodies elicit a strong anti-mouse immunoglobulin immune response on repeated administration in man. This problem has been addressed by the development of various strategies for "humanization" of mouse anti-CEA MAbs by genetic manipulation of immunoglobulin genes. Such humanized, engineered antibodies markedly attenuate the antigenic response directed against the MAb, such that safe, repeated administration to patients has become feasible. Such humanized anti-CEA antibodies can thus be radioactively-labelled and applied for in vivo monitoring and detection of recurrent malignant disease, or used for therapeutic strategies which similarly take advantage of the ability of the antibodies to target cytotoxic agents selectively to tumor cells. The application of these novel procedures for manipulating MAb structure presents entirely new opportunities for diagnosis and treatment of human colorectal cancer.  相似文献   

18.
The commercial success of bispecific antibodies generally has been hindered by the complexities associated with generating appropriate molecules for both research scale and large scale manufacturing purposes. Bispecific IgG (BsIgG) based on two antibodies that use an identical common light chain can be combined with a minimal set of Fc mutations to drive heavy chain heterodimerization in order to address these challenges. However, the facile generation of common light chain antibodies with properties similar to traditional monoclonal antibodies has not been demonstrated and they have only been used sparingly. Here, we describe the design of a synthetic human antibody library based on common light chains to generate antibodies with biochemical and biophysical properties that are indistinguishable to traditional therapeutic monoclonal antibodies. We used this library to generate diverse panels of well-behaved, high affinity antibodies toward a variety of epitopes across multiple antigens, including mouse 4-1BB, a therapeutically important T cell costimulatory receptor. Over 200 BsIgG toward 4-1BB were generated using an automated purification method we developed that enables milligram-scale production of BsIgG. This approach allowed us to identify antibodies with a wide range of agonistic activity that are being used to further investigate the therapeutic potential of antibodies targeting one or more epitopes of 4-1BB.  相似文献   

19.
白介素-6(interleukin-6,IL-6)作为一种多效的细胞因子,参与机体内众多生理与病理过程。研究表明,IL-6首先与自身受体(IL-6R、gp130)形成异源六聚体复合物,进而激活下游信号转导通路,最终发挥生物学功能。 IL-6信号通路异常活化及功能失调与多种疾病密切相关,如自身免疫疾病、慢性炎症、恶性肿瘤等。另外IL-6的异常表达在新型冠状病毒肺炎(COVID-19)细胞因子风暴综合征(CSS)中也扮演重要角色。一般而言,阻断IL-6信号通路上的各关键节点,均可用于IL-6相关疾病的治疗。有别于阻断IL-6R或gp130等公共受体分子,阻断IL-6蛋白的治疗性单克隆抗体特异性更高,在临床研究中,部分品种显示出其独有的治疗特点及有益的疗效。现阶段只有1个靶向IL-6蛋白的单克隆抗体药物获美国FDA批准上市,以及超过8个治疗性单克隆抗体在临床研究阶段。重点对国内外靶向人IL-6蛋白的治疗性单克隆抗体及其临床应用进行综述。  相似文献   

20.
Antibody preparations have a long history of providing protection from infectious diseases. Although antibodies remain the only natural host-derived defense mechanism capable of completely preventing infection, as products, they compete against inexpensive therapeutics such as antibiotics, small molecule inhibitors and active vaccines. The continued discovery in the monoclonal antibody (mAb) field of leads with broadened cross neutralization of viruses and demonstrable synergy of antibody with antibiotics for bacterial diseases, clearly show that innovation remains. The commercial success of mAbs in chronic disease has not been paralleled in infectious diseases for several reasons. Infectious disease immunotherapeutics are limited in scope as endemic diseases necessitate active vaccine development. Also, the complexity of these small markets draws the interest of niche companies rather than big pharmaceutical corporations. Lastly, the cost of goods for mAb therapeutics is inherently high for infectious agents due to the need for antibody cocktails, which better mimic polyclonal immunoglobulin preparations and prevent antigenic escape. In cases where vaccine or convalescent populations are available, current polyclonal hyperimmune immunoglobulin preparations (pIgG), with modern and highly efficient purification technology and standardized assays for potency, can make economic sense. Recent innovations to broaden the potency of mAb therapies, while reducing cost of production, are discussed herein. On the basis of centuries of effective use of Ab treatments, and with growing immunocompromised populations, the question is not whether antibodies have a bright future for infectious agents, but rather what formats are cost effective and generate safe and efficacious treatments to satisfy regulatory approval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号