首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engels  C. 《Annals of botany》1994,73(2):211-219
Maize (Zea mays L.) and spring wheat (Triticum aestivum L.)were grown in nutrient solution at uniformly high air temperature(20 °C), but different root zone temperatures (RZT 20, 16,12 °C). To manipulate the ratio of shoot activity to rootactivity, the plants were grown with their shoot base includingthe apical meristem either above (i.e. at 20 °C) or withinthe nutrient solution (i.e. at 20, 16 or 12 °C). In wheat, the ratio of shoot:root dry matter partitioning decreasedat low RZT, whereas the opposite was true for maize. In bothspecies, dry matter partitioning to the shoot was one-sidedlyincreased when the shoot base temperature, and thus shoot activity,were increased at low RZT. The concentrations of non-structuralcarbohydrates (NSC) in the shoots and roots were higher at lowin comparison to high RZT in both species, irrespective of theshoot base temperature. The concentrations of nitrogen (N) inthe shoot and root fresh matter also increased at low RZT withthe exception of maize grown at 12 °C RZT and 20 °Cshoot base temperature. The ratio of NSC:N was increased inboth species at low RZT. However this ratio was negatively correlatedwith the ratio of shoot:root dry matter partitioning in wheat,but positively correlated in maize. It is suggested that dry matter partitioning between shoot androots at low RZT is not causally related to the internal nitrogenor carbohydrate status of the plants. Furthermore, balancedactivity between shoot and roots is maintained by adaptationsin specific shoot and root activity, rather than by an alteredratio of biomass allocation between shoot and roots.Copyright1994, 1999 Academic Press Wheat, Triticum aestivum, maize, Zea mays, root temperature, shoot meristem temperature, biomass allocation, shoot:root ratio, carbohydrate status, nitrogen status, functional equilibrium  相似文献   

2.
This work examines the differences in partition and activityof 14C in two varieties of carrot (Daucus carota L.) contrastingin shoot to storage root ratio at maturity. Plants were grownin a controlled environment of 20 ?C and 500 µmol m–2s–1. During initiation of the storage root (10–25d from sowing) plants were exposed to 14CO2 for 1 h and theradioactivity in ethanol-soluble and -insoluble fractions ofshoots, storage and fibrous roots estimated at various timesup to 48 h after exposure. Between 35% and 40% of radioactivityinitially present in the plants was respired during the first24 h and 25–35% of that remaining after 24 h was foundin the roots, depending on age. The proportion found in thestorage region remained fairly constant between 15 and 25 dand was smaller than at 10 d. In the variety with a larger proportionof storage root at maturity (cv. Super Sprite), there was agreater proportion of label in both ethanol-soluble and -insolublefractions of the storage region soon after storage root initiationhad begun than in the variety with a smaller proportion of storageroot at maturity (cv. Kingston). There was no varietal differencein specific activities of the storage roots, but fibrous rootsof cv. Super Sprite showed a greater specific activity thanin cv. Kingston. Differences in shoot to storage root ratiomay thus be associated with characteristics of the fibrous roots.Partition and specific activities are discussed in relationto the initiation and development of the storage organ. Key words: Daucus carota, carrot, assimilate, partition, 14C, storage root  相似文献   

3.
The distribution of dry matter between shoot and storage rootof carrot plants grown in light regimes varying in intensity,duration and integral, is used to test an hypothesis for thecontrol of assimilate partition Results from seven varietiesshow that shoot to storage root weight ratios are affected bythe light environment, but that these effects are associatedwith the effect of light on plant size It is concluded thatquantitative alterations to the supply of assimilate, resultingfrom variation in the light regime, do not affect its partitionto different organs This is discussed in relation to other investigationswhich have suggested a relationship between the duration ofthe photosynthetic period, assimilate sequestration in foliarstarch and partition between shoot and root Daucus carota L, carrot, assimilate partition, light intensity, daylength, shoot, storage root, shoot-root ratio, source-sink relations  相似文献   

4.
A field study tested the hypothesis that modern wheat varieties invest a lesser proportion of the total dry matter (root plus shoot) in the root system compared to old varieties. The study was carried out on a duplex soil (sand over clay) at Merredin, Western Australia in a Mediterranean type environment. We also compared the root:shoot dry matter ratios of near-isogenic lines for Rht dwarfing genes.Root:shoot ratios decreased with crop growth stage and were closely related to the developmental pattern of a variety. All varieties appeared to accumulate more dry matter into shoots after the terminal spikelet stage. For the modern variety Kulin this occurred as early as 55 days after sowing (DAS), but did not occur until 90 DAS in the old variety Purple Straw. For all varieties, root dry matter reached its maximum at anthesis, while shoot dry matter continued to increase till maturity. At anthesis there were no significant differences in shoot dry matter between varieties, but from Purple Straw to Kulin root dry matter and thus root:shoot ratio decreased.The tall and dwarf isogenic lines had similar developmental and root:shoot dry matter accumulation patterns.At anthesis, the old variety Purple Straw had significantly higher root dry matter and root length density in the top 40-cm of the profile than modern variety Kulin. There were no varietal differences in rooting depth, water extraction or water use. At maturity about 30% of the total dry matter was invested in the roots among wheat varieties. Grain yield, harvest index (HI) and water use efficiency of grain (WUEgr) increased from old to modern varieties.The reduced investment of dry matter in the root system and thus the lower root:shoot ratio from early in the growing season may partly explain the increased HI and WUEgr of modern compared to old varieties.  相似文献   

5.
Changes in dry matter accumulation and allocation, abscisic acid content and carbon isotope composition of three wheat cultivars from dry, middle and wet climate regions were recorded at full maturity after exposure to different watering regimes (100, 50 and 25 % field capacity). Compared with the wet climate cultivar, the dry climate cultivar showed lower stem height, total leaf area, total dry biomass and total grain dry mass, and higher root/shoot ratio, abscisic acid content and carbon isotope composition under all watering regimes. Both water-limited treatments significantly reduced leaf growth and increased dry matter allocation into the roots leading to a significant raise of root/shoot ratio in all cultivars tested. In addition, drought affected morphological and physiological properties more in the dry climate cultivar than in the wet climate cultivar.  相似文献   

6.
This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7–9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60–64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7–11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17–25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.  相似文献   

7.
Root-tiller relations were investigated in spring barley grownin soil in deep pots. The total dry wt of the root system reachedits maximum 6 weeks from sowing, when the shoot weight was only50 per cent of its value at maturity. Seminal and nodal rootscomprised 40 and 60 per cent, respectively, of the total rootdry wt at maturity; the majority of the nodal root weight wasassociated with the main shoot. The main shoot had approximatelytwice as many nodal roots as either of the first two primarytillers (T1 and T2), and the primary and secondary tillers appearinglater were very poorly rooted. Some tillers, especially secondarytillers that died prematurely, produced no nodal roots. Theweight of the seminal roots and nodal roots attached to themain shoot continued to increase up to maturity but the drywt of nodal roots on tillers declined with time. This patternof growth was closely related to the pattern of 14C assimilateddistribution within the root system. A very small proportionof 14C assimilated by the main shoot and T1 and T2 was exported.The majority of the exported assimilate went to the seminalroot system and to nodal roots attached to the main shoot. Individualnodal and seminal roots seemed to have different roles in supplyingnutrients to the shoot system, with the former mainly providing32P-phosphate to its tiller of origin and the latter generallysupplying the main shoot and primary tillers. Hordeum distichum. (L.) Lam., barley, root growth, nodal roots, seminal roots, tillering, assimilate distribution, 32P-distribution  相似文献   

8.
The economy of carbon in nodulated white lupin (Lupinus albusL.) was studied in terms of consumption of net photosynthatein nitrogen fixation, in maintenance of respiration, and inthe production of dry matter and protein. Net photosynthesisrose to a maximum in early fruiting and then fell abruptly dueto shedding of leaves. Nodulated roots acquired translocateequivalent to 51% of the plant's net photosynthate, 78% of thecarbon of this translocate being respired, 10% entering drymatter, and 12% returning to the shoot attached to productsof nitrogen fixation. Nodules utilized 4?0–6?5 g C infixing 1 g nitrogen. Photosynthate was utilized most effectivelyfor nitrogen fixation in late vegetative growth. Fruits sequestered16% of the plant's net photosynthate, shoot night respiration17%, and dry matter formation in shoot vegetative parts 22%.Averaged over growth, 9?9 g net photosynthate was required toproduce 1 g seed dry matter and 31 g net photosynthate to produce1 g seed protein. Budgets for utilization of the carbon of netphotosynthate were constructed for 10 d intervals of the plant'sgrowth cycle. Feeding of shoots with 14CO2 resulted in radiocarbonbecoming partitioned approximately as predicted by these budgets.The dependence of root respiration on recent photosynthate wasassessed by following the time course of release of 14CO2 tothe rooting medium of the 14CO-labelled plants.  相似文献   

9.
Plants of Plantago lanceolata L. and Zea mays L., cv. ‘Campo’were grown at two levels of light intensity. Especially in theroots, the rate of dry matter accumulation decreased at lowlight intensity. The carbohydrate content of both roots andshoots of P. lanceolata was not affected by light intensity.The relative contribution of SHAM1-sensitive respiration, thealternative chain, to total root respiration of both P. lanceolataand Z. mays, was not affected by light intensity during thedaytime. The alternative pathway was somewhat decreased at theend of the dark period, but not in the root tips (0–5mm) where it still contributed 56% in respiration. It was, therefore,concluded that photosynthesis is not a major factor in regulationof root growth in the species investigated. To see whether the effect of light intensity on root growthrate was via transpiration, plants of Z. mays were grown atdifferent air humidities. Both high humidity and low light intensityaffected the root morphology in such a way that the distancebetween the apex and the first laterals on the primary rootaxis increased. It is suggested that this effect on root morphologyis due to transpiration and the subsequent removal of root-producedinhibitors of lateral root growth; although light intensityalso affected the rate of dry matter accumulation of roots andthe rate was not affected by the humidity of the air. It is,therefore, concluded that the effect of light intensity on therate of dry matter accumulation of roots of Z. mays is not viaan effect on transpiration.  相似文献   

10.
Although it is well established that the root growth in manyspecies is very sensitive to mechanical impedance or to confinementin small volumes, little is known about the consequent effectson growth of the whole plant and the mechanisms involved. Thiswork investigated the effects of root confinement on the waterrelations, growth and assimilate partitioning of tomato (Lycopersiconesculentum Mill) grown in solution culture. Six-week old plants were transferred to either 4500 ml or 75ml containers filled with nutrient solution, and allowed togrow for 14 d. Transpiration, leaf-air temperature differences,and leaf diffusive resistances were measured frequently. Leaf,stem and shoot dry masses, leaf area and root length, were estimatedwhen the treatments were imposed and at the end of the experiment.After 14 d growth the root and shoot hydraulic resistances wereestimated from measurements of leaf water potential and transpirationrate, using a steady-state technique. Confining root growth to the small containers substantiallyreduced shoot and root growth and increased the proportion oftotal dry matter present in the stems. These effects were dueto drought stress. The hydraulic resistance of the root systemwas greatest in the confined plants. This led to more negativeleaf water potentials, increased leaf diffusive resistance,and reduced the net assimilation rate by a factor of 2.5. Transpirationper unit leaf area was less affected. However, cumulative transpirationwas also reduced by a factor of 2.5. mostly because of the smallerleaf area on the confined plants. Root hydraulic resistivitywas measured at 3.1 x 1012s m–1 in the control treatment,but increased to 3.9 x 1012 s m–1 for roots in the smallcontainer. The mechanisms by which root confinement caused drought stressand disrupted the pattern of assimilate partitioning are discussedin detail. Assimilate partitioning, Lycopersicon esculentum, root confinement, plant growth, root growth, root resistance, shoot resistance, tomato, transpiration, water-use efficiency  相似文献   

11.
Stirlingia latifolia, a common shrub of Banksia woodlands ofSW Australia, is a highly successful resprouter species recoveringfrom fire by multiple sprouting of new shoots from its upperroot stock. in comparison with the congeneric fire-sensitive(obligate seeder) species Stirlingia tenuifolia it exhibitsa low shoot:root dry weight ratio and high concentrations ofstored starch in the cortical tissue of its roots. The relationshipbetween root reserves of starch and development of newly sproutingshoot material following fire is examined in S. latifolia afterspring and summer burns. During the initial 2-5 month periodafter fire, levels of stored starch in the roots fall by 50-75%,followed by a slow increase as plants reproduce and the attainmentof pre-fire starch levels by 1·5-2 years after the fire.Starch reserves of roots can be further reduced by shading theregenerating shoots to limit their input of photosynthates andalmost totally eliminated by monthly removal of successive flushesof new shoots over a 10-12 month period. New shoots continueto sprout until all the starch is eliminated. The data are discussedin relation to the fire-induced reproduction of S. latifoliaand its ability to thrive in very frequently burnt habitats.Copyright1993, 1999 Academic Press Fire response, Proteaceae, resprouter, shoot:root ratio, starch storage, Stirlingia latifolia  相似文献   

12.
MCLAREN  J. S. 《Annals of botany》1984,54(3):383-390
Data from both controlled environment and field experimentson sugarbeet are used to support the concept that dry matterdistribution between top and storage root growth can be adequatelyquantified by over a large part of the growing season. Very young plants,prior to cambial ring development, had higher slopes for thelog-log relationship at each harvest. Estimates of the slopesbecame relatively constant about 30 d after emergence indicatingthat the pattern for dry matter distribution was determinedat an earlier stage of growth than is apparent from considerationof linear growth scales. Estimates of and are similar to thosereported for other storage root crops with differences in reflectingrelative size differences. Differences in applied N in the fieldwere detected as a shift in the intercept of the relationshipfor dry matter distribution. In general, the results with sugarbeetare agreement with the Barnes' model, which relates assimilatepartitioning to relative sink activities, respiration rates,and initial weights of plant parts. Beta vulgaris L., sugarbeet, dry matter distribution, assimilate partitioning, storage root, growth pattern, nitrogen, root/shoot weight  相似文献   

13.
Continuous measurements of CO2-evolution and dry matter accumulation were carried out on shoots and roots separately of intact Helianthus annuus L. cv. Autumn Beauty plants grown in nutrient solution at different root temperatures. The data were used to distinguish between growth and maintenance components of respiration. The maintenance and growth coefficients were higher in the root system than in the shoots. The overall efficiency of assimilate utilization was within the range reported in the literature. An increase in root temperature increased the maintenance part of root respiration and, to a lesser degree, also shoot maintenance respiration. Neither root nor shoot growth respiration coefficients were affected by root temperature. It is concluded that the study of whole-plant respiration masks differences in energy utilization between shoots and roots.  相似文献   

14.
The effect of two levels of daily irradiation on shoot growthand root/shoot partitioning was investigated on two lucernevarieties (Medicago sativa L.). Individual plants were studiedunder constant temperature and optimal water and mineral nutritionconditions. For both lucerne varieties, daily irradiation did not changebiomass partitioning between shoots and roots. It can be shownthat leaf area expansion occurs independently of daily irradiationand that the process of shoot dry matter production is strictlyproportional to daily irradiation, since the ratio leaf area/shootdry matter is inversely proportional to it. From a model of shoot production of the isolated plant, we showthat the relative shoot specific activity is not affected bydaily irradiation. A simple model of partitioning leads us todetermine why partitioning remains the same for the two at thelevels of daily irradiation. Finally, the allocation between shoot and root turns out tobe independent of the main stem extension rate, which is fasterat the higher daily irradiation. Medicago sativa L., lucerne, daily irradiation, shoot production, root/shoot ratio, leaf area expansion, partitioning model  相似文献   

15.
Pepper (Capsicum annuum L.) cultivars differ in susceptibilityto stress-induced abscission. Previous research indicates thatthe stress susceptible cultivar 'Shamrock' undergoes a largerreduction in net assimilation rate (NAR) under low light stress,and partitions less dry matter (DM) to reproductive structuresand more to leaves than the more tolerant cultivar 'Ace'. Todetermine if photosynthetic rates under low light stress couldexplain NAR differences, photosynthesis was measured on 'Ace'and 'Shamrock'. Assimilate partitioning was compared throughmeasurement of leaf and bud respiration rates and analysis ofbud sugar concentrations. Photosynthetic rates per unit leafarea of leaves fully exposed to incident light revealed no cultivardifferences under low light conditions. Bud respiration ratesfell to a lower level in 'Shamrock' than 'Ace' in low light-stressedplants, while expanded leaves respired at higher rates in 'Shamrock'than 'Ace' under both full and low light. Bud sugar concentrationswere significantly lower in 'Shamrock' than 'Ace' after 3 dof low light stress. Susceptibility to low light stress-inducedabscission in 'Shamrock' appears to be associated with reducedassimilate partitioning to flower buds, which may be relatedto high assimilate consumption in maintenance of expanded leaves.Copyright1994, 1999 Academic Press Pepper (Capsicum annuum L.), abscission, low light stress, photosynthesis, respiration, sugars, assimilate partitioning, cultivar  相似文献   

16.
SZANIAWSKI  R. K. 《Annals of botany》1983,51(4):453-459
Helianthus annuus L. plants were grown with the shoots at normalair temperature and with the roots in nutrient solution at 10,20 or 30 °C. The higher the root temperature the greaterthe growth of the leaves, resulting in higher production ofphotosynthates. Irrespective of growth conditions an equilibriumwas established between the maintenance respiratory activityof shoot and roots. A constant proportion of the photosynthateproduced was used in respiration. The results are discussedin relation to a thermodynamic theory of stability of biologicalsystems. It is suggested that changes in energy partition betweenmaintenance and growth, and then in relative growth rates ofshoots and roots during an adaptation period, represent a majorhomeostatic mechanism. shoots, roots, maintenance respiration, growth, relative growth rate, respiration, adaptation, sunflower, Helianthus annuus L.  相似文献   

17.
Growth analysis and 14CO2 feeding experiments have shown thatthe developing storage organ became an increasingly importantsink for assimilates, accumulating 40% of the dry matter producedby the carrot plant within 9 weeks of sowing. The relative importanceof each leaf in fixing and exporting 14C was assessed at twostages of development. Morphogenetic responses indicated thatan absence of thickening in the lateral roots was associatedwith continued meristematic activity in the tap root, in theform of an elongating apex or a vascular cambium. Source-sink relations were examined by observing plant growthfollowing the removal of part of the tap root and/or lateralroots. Pruning the roots at 35 d reduced the subsequent growthof the plant by reducing the AGR of the remaining root systemand the shoot. The reduction in leaf growth was associated witha loss of fibrous roots, removal of part of the tap root havingvery little additional effect on shoot growth although the AGRof the root system was reduced by a further 78%. Increased fibrousroot RGRs following pruning soon re-established the normal fibrousroot/shoot ratio. These experiments demonstrated the importanceof the root system in controlling dry matter production in thecarrot plant, but suggested that the sink activity of the developingstorage organ was less significant than other root functions.  相似文献   

18.
Soybean stems were grafted between the first and second nodes6 weeks after planting. Three or 5 weeks after grafting, oneroot system was cut from grafted plants, doubling the shoot:root ratio. This technique was applied to plants grown in sandculture and supplied with an excess of water and minerals butwith no combined nitrogen so that doubling the shoot:root ratiogreatly increased the requirement for fixed nitrogen. When theshoot:root ratio was doubled during the flowering or seed formationstages, there was no statistically significant effect on totalnitrogen or dry matter of shoots compared to non-grafted controlsat maturity. The period between 2 and 21 d after doubling theshoot:root ratio was studied to determine changes in root weight,nodule weight, and rate of nitrogen fixation (acetylene reduction).Weight of roots and nodules increased relative to controls (graftedplants with one shoot per root) after about 1 week. The rateof acetylene reduction per gram of nodule was 75 per cent greaterwith roots having two shoots than with control roots 2 d afterdoubling the shoot:root ratio. Acetylene reduction per noduledeclined to near control rates as nodule weight increased, butroots with two shoots maintained a 60 to 70 per cent greaterrate of acetylene reduction per root for 2 weeks. The resultsindicated that nodulated soybean roots are capable of fixingnitrogen at rates greater than those which normally prevail.  相似文献   

19.
Previous studies suggest that the positive response of transplanted rice (Oryza sativa L.) to nursery fertiliser application was due to increased seedling vigour or possibly to increased nutrient content. This paper presents results of two glasshouse experiments designed to test the hypothesis that seedling vigour was responsible for the response of transplanted seedlings to nursery treatments. The aim of the present study was to explore the concept of seedling vigour of transplanted rice and to determine what plant attributes conferred vigour on the seedlings. Seedling vigour treatments were established by subjecting seedlings to short-term submergence (0, 1 and 2 days/week) in one experiment and to leaf clipping or root pruning and water stress in another to determine their effect on plant growth after transplanting. Submerging seedlings increased plant height but depressed shoot and root dry matter and root:shoot ratio of the seedling at 28 days after sowing. After transplanting these seedlings, prior submergence depressed shoot dry matter at 40 days. Nursery nutrient application increased plant height, increased root and shoot dry matter, but generally decreased root:shoot ratio. Pruning up to 60% of the roots at transplanting decreased shoot and root dry matter, P concentration in leaves at panicle initiation (PI) and straw dry matter and grain yield at maturity. By contrast, pruning 30% of leaves depressed shoot and root dry matter by 30% at PI, and root dry matter and straw and grain yield by 20% at maturity. The combined effects of leaf clipping and root pruning on shoot, root and straw dry matter were largely additive. It is concluded that the response of rice yield to nursery treatments is largely due to increased seedling vigour and can be effected by a range of nutritional as well as non-nutritional treatments of seedlings that increase seedling dry matter, nutrient content, and nutrient concentration. Impairment of leaf growth and to a lesser extent root growth in the nursery depressed seedling vigour after transplanting. However, rather than increasing stress tolerance, seedling vigour was more beneficial when post transplant growth was not limited by nutrient or water stresses.  相似文献   

20.
Shoot and root growth rate, carbohydrate accumulation (includingfructan), reducing sugar content and dry matter percentage weremeasured in six wheat cultivars, ranging from winter to springtypes, grown at either 5 or 25 °C. At 5 °C (comparedwith 25 °C), the relative growth rate (RGR) of shoots wassimilarly reduced in all cultivars, but the RGR of shoots wasmore affected in winter wheats. This difference resulted insmaller root:shoot ratios than in spring wheats, which alsodeveloped more first-order lateral roots. A direct relationshipbetween carbohydrate accumulation at low temperatures and reductionin root growth was established. These results suggest that differentialshootvs.root growth inhibition at low temperature may play akey role in carbohydrate accumulation at chilling temperatures.This differential response might lead to improvements in survivalat temperatures below 0 °C, regrowth during spring, andwater and nutrient absorption at low temperatures.Copyright1997 Annals of Botany Company Wheat; Triticum aestivum; low temperatures; root growth; root: shoot ratio; sugar accumulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号