首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied the properties of beta-adrenergic receptors and of their interaction with adenylate cyclase in the chick myocardium during embryogenesis. Between 4.5 and 7.5 days in ovo the number of receptors determined by (-)-[3H]dihydroalprenolol ([3H]DHA) binding is constant at approx. 0.36 pmol of receptor/mg of protein. By day 9 the density decreases significantly to 0.22 pmol of receptor/mg of protein. At day 12.5--13.5 the number was 0.14--0.18 pmol of receptor/mg of protein. This number did not change further up to day 16. The same results were obtained with guanosine 5'-[beta, gamma-imido]triphosphate (p[NH]ppG) added to the assay mixtures. There was no significant change in receptor affinity for the antagonist [3H]DHA between days 5.5 and 13. Despite the decrease in numbers of beta-adrenergic receptors, there was no change in basal, p[NH]ppG-, isoprenaline- or isoprenaline-plus-p[NH]ppG-stimulated adenylate cyclase activity between days 3 and 12 of development. We conclude that beta-adrenergic receptors and adenylate cyclase are not co-ordinately regulated during early embryonic development of the chick heart. Some of the beta-adrenergic receptors present very early in the ontogeny of cardiac tissue appear not to be coupled to adenylate cyclase since their loss is not reflected in decreased activation of the enzyme.  相似文献   

2.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

3.
Using the ligands [125I]iodohydroxybenzylpindolol and [3H]prostaglandin E1 ([3H]PGE1), we have studied the relationship of receptors for beta-adrenergic agents and for PGE1 to adenylate cyclase in membranes of parental, hybrid, and variant mammalian cell lines. Fusion of parental clones responsive to beta-adrenergic agonists (beta+) with unresponsive clones (beta-) produced hybrid clones with a greatly diminished beta-adrenergic response; beta+ X beta leads to beta-. Binding studies with [125I]iodohydroxybenzylpindolol showed a decreased concentration of beta receptors in six such hybrid clones. Thus, paucity of beta-adrenergic receptors is probably a sufficient, albeit not necessarily complete, explanation for the decreased beta-adrenergic responsiveness of the hybrid clones. When a clone with beta receptor but without apparent adenylate cyclase activity (HC-1) was hybridized with a beta- clone that has adenylate cyclase (B82), a responsive hybrid clone was obtained. In nine cell hybrids produced by the fusion of clones responsive (PGE1+) and unresponsive (PGE1-) to PGE1, high affinity binding sites for [3H]PGE1 were expressed in the same manner as was PGE1-sensitive adenylate cyclase: PGE1+ X PGE1 leads to PGE1+. The chemical specificities and affinities of the parental receptors and responsive adenylate cyclases were faithfully reproduced in the hybrid clones. Activation by PGE1 was proportional to the occupation of the high affinity receptors. In a wild type lymphoma clone (24.3.2), the concentration dependences for binding of [3H]PGE1 and for activation of adenyalte cyclase by PGE1 were identical. In a variant lymphoma clone (94.15.1) lacking adenylate cyclase activity, no high affinity receptors for PGE1 were detected, whereas beta-adrenergic receptors have been demonstrated in this variant clone (Insel, P.A., Maguire, M.E., Gilman, A.G., Coffino, P., Bourne, H., and Melmon, K. (1976) Mol. Pharmacol. 12, 1062-1069). Hybrid cells formed by the fusion of 94.15.1 with cell line RAG (PGE1-) responded to PGE1. Clone 94.15.1 may have receptors for PGE1 of reduced affinity or in low concentration. Alternatively, RAG and 94.15.1 may have complementary genetic defects such that the RAG X 94.15.1 hybrid cells express a hormonally responsive receptor-adenylate cyclase system.  相似文献   

4.
Experiments were carried out to clarify the sites of action of beta-adrenergic agonists in skeletal muscle microsomes. Microsomes were fractionated into longitudinal reticulum, terminal cisternae, and isolated transverse tubules. Transverse tubules were selectively labeled and tracked with [3H]ouabain. beta-adrenergic receptor was identified by [3H]dihydroalprenolol binding. Assays of beta-adrenergic receptor, adenylate cyclase, and protein kinase-stimulated phosphorylation showed: 1) beta-adrenergic receptor was detected in transverse tubules with a receptor density of 0.61 pmol/mg of protein. No significant binding was detected in longitudinal reticulum or in terminal cisternae. 2) Isoproterenol-stimulated adenylate cyclase was present in microsomes but was similarly confined to the transverse tubular fraction. The activity of F- stimulated cyclase in transverse tubules was 2.3 nmol/mg of protein/min. 3) No phosphorylation of microsomes by cyclic AMP and protein kinase could be detected. We conclude that the action of epinephrine on skeletal muscle is mediated through receptors and adenylate cyclase in the external membrane.  相似文献   

5.
[3H]Dihydroalprenolol, a potent beta-adrenergic antagonist, was used to identify the adenylate cyclase-coupled beta-adrenoceptors in isolated membranes of rat skeletal muscle. The receptor sites, as revealed by [3H]dihydroalprenolol binding, were predominantly localized in plasmalemmal fraction. That skeletal muscle fraction may also contain the plasmalemma of other intramuscular cells, especially that of blood vessels. Hence, the [3H]dihydroalprenolol binding observed in that fraction may be due partly to its binding to the plasmalemma of blood vessels. Small but consistent binding was also observed in sarcoplasmic reticulum and mitochondria. The level of [3H]dihydroalprenolol binding in different subcellular fractions closely correlated with the level of adenylate cyclase present in those fractions. The binding of [3H]dihydroalprenolol to plasmalemma exhibited saturation kinetics. The binding was rapid, reaching equilibrium within 5 min, and it was readily dissociable. From the kinetics of binding, association (K1) and dissociation (K2) rate constants of 2.21 . 10(7) M-1 . min-1 and 3.21 . 10(-1) min-1, respectively, were obtained. The dissociation constant (Kd) of 15 mM for [3H]dihydroalprenolol obtained from saturation binding data closely agreed with the Kd derived from the ratio of dissociation and association rate constants (K2/K1). Several beta-adrenergic agents known to be active on intact skeletal muscle also competed for [3H]dihydroalprenolol binding sites in isolated plasmalemma with essentially similar selectivity and stereospecificity. Catecholamines competed for [3H]dihydroalprenolol binding sites with a potency of isoproterenol greater than epinephrine greater than norepinephrine. A similar order of potency was noted for catecholamines in the activation of adenylate cyclase. Effects of catecholamines were stereospecific, (-)-isomers being more potent than (+)-isomers. Phenylephrine, an alpha-adrenergic agonist, showed no effect either on [3H]dihydroalprenolol binding or on adenylate cyclase. Known beta-adrenergic antagonists, propranolol and alprenolol, stereospecifically inhibited the [3H]dihydroalprenolol binding and the isoproterenol-stimulated adenylate cyclase. The Ki values for the antagonists determined from inhibition of [3H]dihydroalprenolol binding agreed closely with the Ki values obtained from the inhibition of adenylate cyclase. The data suggest that the binding of [3H]dihydroalprenolol in skeletal muscle membranes possess the characteristics of a substance binding to the beta-adrenergic receptor.  相似文献   

6.
To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle.  相似文献   

7.
HeLa cells contain receptors on their surface which are beta-adrenergic in nature. The binding of (-)-[3H]dihydroalprenolol is rapid, reversible, stereospecific and of relatively high affinity. The HeLa cells also contain an adenylate cyclase which is activated by (-)-isoproterenol greater than (-)-epinephrine greater than (-)-norepinephrine. The adenylate cyclase of HeLa is also activated by guanyl-5'-ylimidodophosphate (Gpp(NH)p), a nonhydrolyzable analogue of GTP. Inclusion of both (-)-isoproterenol and Gpp(NH)p leads to approximately additive rather than synergistic activation of adenylate cyclase. After treatment of HeLa cells with 5mM sodium butyrate there is an increase in the number of beta-adrenergic receptors, but not in their affinity, which is reflected in an increased ability of (-)-isoproterenol to activate adenylate cyclase. Other properties of the beta-adrenergic receptor including association and dissociation rates, temperature optimum of adenylate cyclase and response to Gpp(NH)p are relatively unaffected by butyrate pretreatment of the cells.  相似文献   

8.
Tetracaine and other local anesthetics exert multiple actions on the catecholamine-sensitive adenylate cyclase system of frog erythrocyte membranes. Tetracaine (0.2--20 mM) reduces the responsiveness of adenylate cyclase to (a) guanyl-5'-yl-imidodiphosphate and (b) isoproterenol in the presence of GTP or guanyl-5'-yl-imidodiphosphate. Local anesthetics did not affect (a) basal enzyme activity, and (b) enzyme responsiveness to NaF. Tetracaine inhibited stimulation of adenylate cyclase by guanyl-5'-yl-imidodiphosphate over the whole range of nucleotide concentrations. By contrast, inhibition by tetracaine of isoproterenol activity in the presence of GTP was significant only if GTP concentrations exceeded 10(-7) M. Tetracaine also competitively inhibited binding of both the antagonist [3H]dihydroalprenolol and the agonist [3H]hydroxybenzylisoproterenol to beta-adrenergic receptors. However, it was twice as potent in inhibiting [3H]hydroxybenzylisoproterenol as [3H]dihydroalprenolol binding. The greater potency for inhibition of agonist binding was due to the ability of the anesthetics to promote dissociation of the high-affinity nucleotide sensitive state of the beta-adrenergic receptor induced by agonists. Other local anesthetics mimicked the effects of tetracaine on adenylatecyclase and in dissociating high-affinity agonist-receptor complexes. The other of potency for both processes was dibucaine greater than tetracaine greater than bupivacaine greater than lidocaine which agrees with their relative potencies as local anesthetics. By contrast, a different order of potency was observed for competitive inhibition of [3H]dihydroalprenolol binding: dibucaine greater than tetracaine greater than greater than lidocaine greater than bupivacaine.  相似文献   

9.
Treatment of frog erythrocytes with N,N' dicyclohexylcarbodiimide (DCCD) leads to a loss of catecholamine stimulated adenylate cyclase activity without any decrease in fluoride or PGE1 stimulated cyclase. However, the concentrations of the reagent which inhibit catecholamine sensitive adenylate cyclase activity are 10 fold lower than those which inhibit specific [3H]dihydroalprenolol ([3H]DHA) beta-adrenergic receptor binding. By contrast binding of the readiolabeled beta-adrenergic agonist [3H]hydroxybenzylisoproterenol ([3H]HBI) is considerably more sensitive than antagonist binding to the effects of DCCD. The data suggest that low concentrations of the reagent may modify the effector portion of the beta-adrenergic receptor leading to functional uncoupling of the beta-receptor adenylate cyclase system. At higher concentrations of the reagent the ligand bidning site of the beta-receptor appears also to be altered.  相似文献   

10.
Conventional homogenizing methods produced membrane preparations of canine trachealis airway smooth muscle which contained adenylate cyclase activity that was stimulated by fluoride but not by isoproterenol. We have devised methods using collagenase digestion of minced trachealis which destroy most of the tough connective tissues but leave dissociated canine trachealis cells in suspension. Gentle homogenization of these cells permitted preparation of a particulate fraction containing adenylate cyclase that was readily stimulated by beta-adrenergic agonist of prostaglandin E2. Isoproterenol stimulation was 2.34 +/- 0.58 (S.E.) times basal and 122 +/- 25% of the stimulation induced by NaF. The beta-adrenergic blocking agent propranolol prevented isoproterenol-induced stimulation of the cyclase but had no effect on prostaglandin E2 stimulation. Catecholamine order of potency was isoproterenol greater than epinephrine greater than norepinephrine. These methods enable demonstration of stimulatory effects of hormones in broken cell preparations of airway smooth muscle that are comparable to those when hormone-stimulated cyclic AMP formation is measured in intact muscle strips.  相似文献   

11.
The specific beta-adrenergic agonist radioligand (+/-)-[3H]hydroxybenzylisoproterenol ([3H]HBI) was used to investigate alterations in the beta-adrenergic receptors of frog erythrocytes occurring during the process of agonist-induced, receptor-specific desensitization. There was close agreement between the percentage fall in [3H]HBI binding and that in catecholamine-stimulated adenylate cyclase activity following periods of preincubation of up to 7 h with 0.1 mM (-)-isoproterenol. Desensitization was maximal by 5 h, resulting in a 69% reduction in [3H]HBI binding and a 67% reduction in isoproterenol-stimulated adenylate cyclase activity. In contrast, binding of the beta-adrenergic antagonist (-)-[3H]dihydroalprenolol was significantly less affected by desensitization (p is less than 0.05 at 2 1/2, 5, and 7 h), showing a maximum reduction in binding of only 35% in these experiments. The consistent close agreement of reduction in agonist binding with that in hormone-stimulated adenylate cyclase activity, together with the significant difference observed between agonist and antagonist binding, implies that an alteration occurs during desensitization which preferentially interferes with agonist binding, while antagonist binding is less affected. The locus of this agonist-specific alteration may be the receptor binding site or a site involved in receptor-enzyme coupling. Agonist binding studies may now be used to assess more completely the desensitized state of beta-adrenergic receptors in systems in which marked desensitization of beta-adrenergic responses is associated with little or no reduction in antagonist binding.  相似文献   

12.
After section of the sciatic nerve, the basal adenylate cyclase (AC) activity in rat gastrocnemius muscle increased 6-7 times per membrane protein and about 2 times per whole muscle in the following 30 or 40 days. The AC activity in the muscle 30 days after denervation was increased about 4 times by forskolin. Calcitonin gene-related peptide (CGRP) also increased the adenylate cyclase activity in the denervated muscle. The binding of [3H]-forskolin (10nM) to cells isolated from gastrocnemius muscle was examined to determine the amount of AC molecules. Inhibition of [3H]-forskolin binding by increasing amounts of unlabeled forskolin gave a sigmoid curve with a IC50 value of 3 x 10(-7) M. Results showed that the number of [3H]-forskolin binding sites per cell was higher on the denervated side than on the control side, like the basal AC activity. The IC50 values for inhibition by unlabeled forskolin of binding of [3H]-forskolin were similar to muscles on the control and denervated sides. These results suggest that an increase in the AC activity induced by denervation was due to an increase in the numbers of AC molecules in the muscle.  相似文献   

13.
The ability of isoproterenol, glucagon, PGE1 and cholera toxin to stimulate the synthesis of cAMP and protein kinase activity in line of liver cells (BRL) and a line of rat hepatoma cells (H35) has been determined. The concentration of cAMP in BRL cells (approximately 10 pmoles/mg protein) is in the range reported for other cultured cell lines but H35 cells contain extraordinarily low amounts of this cyclic nucleotide (approximately 0.05 pmoles/mg protein). Isoproterenol and PGE1 caused an increase in cAMP content, and protein kinase activation in BRL cells, although glucagon was ineffective. H35 cells, in contrast, were completely insensitive to all hormonal agonists. Despite this fact, cholera toxin was able to produce a marked increase in cAMP content, adenylate cyclase activity and protein kinase activation in H35 cells. binding studies with [125 I]-iodohydroxybenzylpindolol, a specific beta-adrenergic receptor antagonist, revealed that each H35 cell possesses fewer than 10 beta-adrenergic receptors whereas BRL cells contain 2-5,000 receptors per cell. The low level of cAMP in H35 cells appears to result from a combination of totally unstimulated adenylate cyclase and apparently elevated phosphodiesterase activities.  相似文献   

14.
The previously unknown mechanism of adenylate cyclase activity inhibition by catecholamines has been found. It is realized through a beta-adrenoreceptor in the smooth muscle of fresh-water mollusc Anodonta cygnea. As to its ligand-binding characteristics (one class of binding sites with Kd = 0.35 + 0.06 nM, a competitive series of ligands substitution: isoproterenol greater than adrenalin greater than propranolol greater than noradrenaline greater than serotonin = dopamine greater than phentolamine) as well as to negative regulation of the GTP affinity this receptor is similar to beta-adrenoreceptors of higher vertebrates. The dose-dependent inhibiting effect (to 50-60%) of isoproterenol and noradrenaline on the basal, GTP- and serotonin-stimulated activity of adenylate cyclase and cAMP level which is removed only by beta-adrenergic blockers is shown in vitro and in vivo. It is concluded that inhibition of adenylate cyclase activity by catecholamines in the muscular tissue of the mollusc is realized via beta-adrenoreceptor.  相似文献   

15.
1. Adenylate cyclase in plasma membranes from rat liver was stimulated by prostaglandin E1, and to a lesser extent by prostaglandin E2. Prostaglandin F1alpha and A1 did not stimulate the cyclase. The prostaglandin E1-mediated activation was found to require GTP when the substrate ATP concentration was reduced from 3 mM to 0.3 mM in the reaction mixture. Adenylate cyclase of the plasma membranes from rat ascites hepatomas AH-130 and AH-7974 was not stimulated by prostaglandin E1 in the presence or the absence of GTP, although the basal activity of adenylate cyclase as well as its stimulation by GTP alone were similar to normal liver plasma membranes. 2. Liver plasma membranes were found to have two specific binders for [3H] prostaglandin E1 with dissociation constants of 17.6-10(-9) M and 13.6-10(8) M (37 degrees C) and one specific binder for [3H]prostaglandin F2alpha with a dissociation constant of 2.31-10(8) M (37 degrees C). The specific binders for prostaglandin E1 could not be detected in the hepatoma plasma membranes. 3. Binding of [3H] prostaglandin E1 to the liver plasma membranes was exchange by, GTP dGPT, GDP, ATP and GMP-P(N)P, but not by GMP, CGMP, DTTP, UTP or CTP. The increase in the binding of [3H] prostaglandin E1 was found to be due to the increased affinity of the specific binders to prostaglandin F2alpha was not affected by GTP. 4. GTP alone was found to increase V of adenylate cyclase of liver plasma membranes, while GTP plus prostaglandin E1 was found to decrease Km of adenylate cyclase in addition to the increase of V to a further extent.  相似文献   

16.
Incubation of intact frog erythrocytes with 12-O-tetradecanoyl phorbol-13-acetate (TPA), a tumor-promoting phorbol diester which activates protein kinase C, results in an approximate two- to threefold increase in subsequently tested beta-adrenergic agonist-stimulated adenylate cyclase activity. This increase is due to an elevation in the Vmax of the enzyme rather than to a change in affinity for the agonist. TPA treatment of frog erythrocytes does not alter the affinity (KD) or the binding capacity (Bmax) for the beta-adrenergic antagonist [125I]cyanopindolol. In addition, agonist/[125I]cyanopindolol competition curves are not affected by TPA pretreatment nor is their sensitivity to guanine nucleotides. Incubation of frog erythrocyte membranes alone with TPA does not promote sensitization or activation of adenylate cyclase activity. Pretreatment of intact frog erythrocytes with TPA also produces approximately two- to threefold increases in basal, guanine nucleotide-, prostaglandin E1-, forskolin-, NaF-, and MnCl2-stimulated adenylate cyclase activities in frog erythrocyte membranes. This enhancement of adenylate cyclase activity by TPA is induced rapidly (t1/2 approximately equal to 5 min) and with an EC50 of about 10(-7) to 10(-6) M. Other tumor-promoting phorbol diesters or phorbol diester-like compounds including 4 beta-phorbol 12,13-dibutyrate, 4 beta-phorbol 12,13-didecanoate, and mezerein are effective in promoting enhanced adenylate cyclase activity. In contrast, phorbols such as 4 beta-phorbol, 4 alpha-phorbol 12,13-didecanoate, and 4-O-methylphorbol 12-myristate 13-acetate, which are inactive in tumor promotion and which do not activate protein kinase C, do not affect frog erythrocyte adenylate cyclase activity. These data are suggestive of a protein kinase C-mediated phosphorylation of one of the adenylate cyclase components that is distal to the receptor, i.e., the nucleotide regulatory and/or catalytic components.  相似文献   

17.
The guanine nucleotide regulatory protein(s) regulates both adenylate cyclase activity and the affinity of adenylate cyclase-coupled receptors for hormones or agonist drugs. Cholera toxin catalyzes the covalent modification of the nucleotide regulatory protein of adenylate cyclase systems. Incubation of frog erythrocyte membranes with cholera toxin and NAD+ did not substantially alter the dose dependency for guanine nucleotide activation of adenylate cyclase activity. In contrast, toxin treated membranes demonstrated a 10 fold increase in the concentrations of guanine nucleotide required for a half maximal effect in regulating beta-adrenergic receptor affinity for the agonist (+/-) [3H]hydroxybenzylisoproterenol. The data emphasize the bifunctional nature of the guanine nucleotide regulatory protein and suggest that distinct structural domains of the guanine nucleotide regulatory protein may mediate the distinct regulatory effects on adenylate cyclase and receptor affinity for agonists.  相似文献   

18.
The internalization of beta-adrenergic receptors was investigated in rat livers perfused with an agonist ([3H]isoprenaline) or an antagonist ([125I]iodocyanopindolol). Analytical centrifugation of liver homogenates indicated that the ligands were transferred rapidly to endosomal and lysosomal positions in sucrose gradients. Endosome fractions contained beta-adrenergic binding sites, but adenylate cyclase activity was low and poorly activated by isoprenaline. The results indicate that the receptor-regulatory-protein-adenylate cyclase complex was disassembled during uptake of beta-adrenergic ligands, with the adenylate cyclase being retained at the plasma membrane.  相似文献   

19.
Guanine nucleotide-dependent modulation of agonist binding to the beta-receptor reflects coupling of the receptor to the nucleotide regulatory protein. Similarly, guanine nucleotide-dependent stimulation of adenylate cyclase can be used as an index of coupling between the regulatory protein and the catalytic unit of the cyclase. Using both approaches we have studied coupling in the beta-adrenergic receptor-adenylate cyclase system in rabbit liver during neonatal development. With [3H]dihydroalprenolol as ligand, the Bmax was relatively unchanged (200-300 fmol/mg of protein) between birth and end of day 1 and was similar to adult values. Guanyl-5'-yl imidodiphosphate-dependent shift in agonist (l-isoproterenol) competition curves was biphasic, decreasing from 10-fold in membranes isolated from animals at term to about 6-fold in membranes from 6-h-old neonates, and increasing progressively in older animals to a maximal measurable value of 42-fold in the adult. The ability of guanyl-5'-yl imidodiphosphate, GTP, GTP plus isoproterenol, NaF, or forskolin to activate adenylate cyclase was also biphasic and age-dependent. With Mn2+ the measured activity was not at any time greater than the activity at term. Pretreatment of membranes with cholera toxin resulted in differential levels of enhancement of adenylate cyclase activity wherein much lower enhancement was observed in membranes from neonatal animals. With [32P]NAD as substrate, cholera toxin-catalyzed ADP-ribosylation of membranes indicated development-dependent accumulation of Ns peptides. From these results we suggest that there is a decreased efficiency in the coupling of the beta-adrenergic receptor to hepatic adenylate cyclase in early neonatal life. The molecular basis for the biphasic nature of the coupling is presently unclear.  相似文献   

20.
In the sarcolemma fraction of foot muscles of a fresh-water bivalve mollusc, Anodonta cygnea, a direct inhibitory, rather than stimulatory, effect of the beta-adrenergic agonist isoproterenol, at micromolar concentration, on cAMP level and adenylate cyclase activity, was revealed. It was blocked by beta- but not alpha-adrenergic antagonists. A single class of [3H]dihydroalprenolol-binding sites with binding properties of beta-adrenergic receptor was detected in mollusc sarcolemma. Potentiation of the inhibitory effect of isoproterenol on mollusc adenylate cyclase activity by GTP or guanosine 5'-[beta,gamma-imido]triphosphate at micromolar concentrations, and its elimination in the presence of guanosine 5'-[beta-thio]diphosphate, were shown. The pertussis-toxin-induced ADP-ribosylation of sarcolemma 40-kDa protein [immunochemically related in the C-terminal part to pertussis-toxin-sensitive guanine-nucleotide-binding regulatory protein (G-protein) alpha subunits of vertebrates], as well as the treatment of mollusc sarcolemma with antisera responsive to the C-terminus of vertebrate inhibitory G-protein (G(i)) alpha subunit led to elimination of the inhibitory effect of isoproterenol on adenylate cyclase activity. The results obtained suggest that beta-agonist-induced inhibition of adenylate cyclase in A. cygnea foot muscle may be realized via the beta-adrenoreceptor/G(i) signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号