首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinin is an adenine derivative plant hormone that generally regulates plant cell division and differentiation in conjunction with auxin. We report that a major cue for the negative regulation of sulfur acquisition is executed by cytokinin response 1 (CRE1)/wooden leg (WOL)/Arabidopsis histidine kinase 4 (AHK4) cytokinin receptor in Arabidopsis root. We constructed a green fluorescent protein (GFP) reporter system that generally displays the expression of the high-affinity sulfate transporter SULTR1;2 in Arabidopsis roots. GFP under the control of SULTR1;2 promoter showed typical sulfur responses that correlate with the changes in SULTR1;2 mRNA levels; accumulation of GFP was induced by sulfur limitation (-S), but was repressed in the presence of reduced sulfur compounds. Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2. SULTR1;1 conducting sulfate uptake in sultr1;2 mutant was similarly downregulated by cytokinin. Downregulation of SULTR1;1 and SULTR1;2 by cytokinin correlated with the decrease in sulfate uptake activities in roots. The effect of cytokinin on sulfate uptake was moderated in the cre1-1 mutant, providing genetic evidence for involvement of CRE1/WOL/AHK4 in the negative regulation of high-affinity sulfate transporters. These data demonstrated the physiological importance of the cytokinin-dependent regulatory pathway in acquisition of sulfate in roots. Our results suggested that two different modes of regulation, represented as the -S induction and the cytokinin-dependent repression of sulfate transporters, independently control the uptake of sulfate in Arabidopsis roots.  相似文献   

2.
The Arabidopsis thaliana mutants altered sulfur response 1-1 ( asr1-1 ) and asr1-2 were isolated using the green fluorescent protein gene ( GFP ), as a marker, driven by a sulfur deficiency-responsive promoter containing the βSR fragment, which is responsible for the induction of gene expression under sulfur deficiency. In the asr1 mutants, the expression of three sulfur deficiency-responsive genes βSR-driven GFP , sulfate transporter 2;2 ( SULTR2;2 ) and adenosine-5'-phosphosulfate reductase 1 ( APR1 ) were induced in medium containing a normal sulfate concentration. The ASR1 locus was mapped to a 53-kb region on the upper arm of chromosome III; this is also the region of the BIG gene, which encodes a calossin-like protein necessary for the polar transport of auxin. The morphology of the asr1 mutants, i.e. reduced leaf size and inflorescence elongation, resembled that of big mutants. Using nucleotide sequence analysis of the BIG gene, we identified independent nonsense mutations in asr1-1 and asr1-2 . To confirm that ASR1 was BIG , we established lines of transgenic A. thaliana carrying a transfer DNA (T-DNA) insertion in the BIG gene. In these T-DNA insertion mutants, mRNA levels of βSR-driven GFP and APR1 were upregulated in normal sulfate medium. The F1 plants from crosses between asr1-1 and T-DNA insertion lines exhibited reduced leaf size and inflorescence length, indicating that ASR1 was indeed BIG . Taken together, the present results established that BIG is involved in the regulation of βSR-driven GFP and APR1 mRNA level gene expression. Indole-3-acetic acid also upregulated βSR-driven GFP and APR1 together with SULTR2;2 mRNA level, suggesting that the big effect on βSR-driven GFP and APR1 is a pleiotropic aspect of the BIG gene.  相似文献   

3.
4.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   

5.
SULTR1;1 high-affinity sulfate transporter is highly regulated in the epidermis and cortex of Arabidopsis roots responding to sulfur deficiency (-S). We identified a novel cis-acting element involved in the -S-inducible expression of sulfur-responsive genes in Arabidopsis. The promoter region of SULTR1;1 was dissected for deletion and gain-of-function analysis using luciferase (LUC) reporter gene in transgenic Arabidopsis. The 16-bp sulfur-responsive element (SURE) from -2777 to -2762 of SULTR1;1 promoter was sufficient and necessary for the -S-responsive expression, which was reversed when supplied with cysteine and glutathione (GSH). The SURE sequence contained an auxin response factor (ARF) binding sequence (GAGACA). However, SURE was not responsive to naphthalene acetic acid, indicating its specific function in the sulfur response. The base substitution analysis indicated the significance of a 5-bp sequence (GAGAC) within the conserved ARF binding site as a core element for the -S response. Microarray analysis of early -S response in Arabidopsis roots indicated the presence of SURE core sequences in the promoter regions of -S-inducible genes on a full genome GeneChip array. It is suggested that SURE core sequences may commonly regulate the expression of a gene set required for adaptation to the -S environment.  相似文献   

6.
Plants require the function of plasma membrane-bound sulphate transporters for the initial uptake of inorganic sulphate. Part of this fundamental process is the energy-dependent proton/sulphate co-transport systems that are located in the surface cell layers of roots. During sulphur limitation, plants are able to activate the expression of sulphate transporters that facilitate the uptake of sulphate in roots. SULTR1;1 and SULTR1;2 are suggested to be the essential components of the sulphate uptake system in Arabidopsis roots. The physiological importance of SULTR1;1 and SULTR1;2 is supported by characteristics that can cope with sulphur deficiency: they were (i) functional high-affinity sulphate transporters; (ii) induced by sulphur limitation at the mRNA levels; and (iii) predominantly localized in the root hairs, epidermis, and cortex. The expression of high-affinity sulphate transporters was primarily regulated by sulphur in a promoter-dependent manner. Aside from the sulphur-specific regulation, the induction of SULTR1;1 and SULTR1;2 high-affinity sulphate transporters by sulphur limitation was dependent on the supply of carbon and nitrogen. In this review, the application of SULTR promoter-GFP systems for the analysis of regulatory pathways of sulphate acquisition in plants is described.  相似文献   

7.
8.
9.
SULTR2;1 is a low-affinity sulfate transporter expressed in the vascular tissues of roots and leaves for interorgan transport of sulfate in Arabidopsis thaliana . Transgenic Arabidopsis carrying a fusion gene construct of SULTR2;1 5'-promoter region and β-glucuronidase coding sequence (GUS) demonstrated that within the reproductive tissues, SULTR2;1 is specifically expressed in the bases and veins of siliques and in the funiculus, which connects the seeds and the silique. The antisense suppression of SULTR2;1 mRNA caused decrease of sulfate contents in seeds and of thiol contents both in seeds and leaves, as compared with the wildtype (WT). The effect of antisense suppression of SULTR2;1 on seed sulfur status was determined by introducing a sulfur-indicator construct, p35S::βSRx3:GUS, which drives the expression of GUS reporter under a chimeric cauliflower mosaic virus 35S promoter containing a triplicate repeat of sulfur-responsive promoter region of soybean β-conglycinin β subunit (βSRx3). The mature seeds of F1 plants carrying both the SULTR2;1 antisense and p35S::βSRx3:GUS constructs exhibited significant accumulation of GUS activities on sulfur deficiency, as compared with those carrying only the p35S::βSRx3:GUS construct in the WT background. These results suggested that SULTR2;1 is involved in controlling translocation of sulfate into developing siliques and may modulate the sulfur status of seeds in A. thaliana .  相似文献   

10.
Xylem transport of sulfate regulates distribution of sulfur in vascular plants. Here, we describe SULTR3;5 as an essential component of the sulfate transport system that facilitates the root-to-shoot transport of sulfate in the vasculature. In Arabidopsis (Arabidopsis thaliana), SULTR3;5 was colocalized with the SULTR2;1 low-affinity sulfate transporter in xylem parenchyma and pericycle cells in roots. In a yeast (Saccharomyces cerevisiae) expression system, sulfate uptake was hardly detectable with SULTR3;5 expression alone; however, cells coexpressing both SULTR3;5 and SULTR2;1 showed substantial uptake activity that was considerably higher than with SULTR2;1 expression alone. The V(max) value of sulfate uptake activity with SULTR3;5-SULTR2;1 coexpression was approximately 3 times higher than with SULTR2;1 alone. In Arabidopsis, the root-to-shoot transport of sulfate was restricted in the sultr3;5 mutants, under conditions of high SULTR2;1 expression in the roots after sulfur limitation. These results suggested that SULTR3;5 is constitutively expressed in the root vasculature, but its function to reinforce the capacity of the SULTR2;1 low-affinity transporter is only essential when SULTR2;1 mRNA is induced by sulfur limitation. Consequently, coexpression of SULTR3;5 and SULTR2;1 provides maximum capacity of sulfate transport activity, which facilitates retrieval of apoplastic sulfate to the xylem parenchyma cells in the vasculature of Arabidopsis roots and may contribute to the root-to-shoot transport of sulfate.  相似文献   

11.
Uptake of external sulfate from the environment and use of internal vacuolar sulfate pools are two important aspects of the acquisition of sulfur for metabolism. In this study, we demonstrated that the vacuolar SULTR4-type sulfate transporter facilitates the efflux of sulfate from the vacuoles and plays critical roles in optimizing the internal distribution of sulfate in Arabidopsis thaliana. SULTR4;1-green fluorescent protein (GFP) and SULTR4;2-GFP fusion proteins were expressed under the control of their own promoters in transgenic Arabidopsis. The fusion proteins were accumulated specifically in the tonoplast membranes and were localized predominantly in the pericycle and xylem parenchyma cells of roots and hypocotyls. In roots, SULTR4;1 was constantly accumulated regardless of the changes of sulfur conditions, whereas SULTR4;2 became abundant by sulfur limitation. In shoots, both transporters were accumulated by sulfur limitation. Vacuoles isolated from callus of the sultr4;1 sultr4;2 double knockout showed excess accumulation of sulfate, which was substantially decreased by overexpression of SULTR4;1-GFP. In seedlings, the supplied [(35)S]sulfate was retained in the root tissue of the sultr4;1 sultr4;2 double knockout mutant. Comparison of the double and single knockouts suggested that SULTR4;1 plays a major role and SULTR4;2 has a supplementary function. Overexpression of SULTR4;1-GFP significantly decreased accumulation of [(35)S]sulfate in the root tissue, complementing the phenotype of the double mutant. These results suggested that SULTR4-type transporters, particularly SULTR4;1, actively mediate the efflux of sulfate from the vacuole lumen into the cytoplasm and influence the capacity for vacuolar storage of sulfate in the root tissue. The efflux function will promote rapid turnover of sulfate from the vacuoles particularly in the vasculature under conditions of low-sulfur supply, which will optimize the symplastic (cytoplasmic) flux of sulfate channeled toward the xylem vessels.  相似文献   

12.
13.

Background

Plant phloem consists of an interdependent cell pair, the sieve element / companion cell complex. Sucrose transporters are localized to enucleate sieve elements (SE), despite being transcribed in companion cells (CC). Due to the high turnover of SUT1, sucrose transporter mRNA or protein must traffic from CC to SE via the plasmodesmata. Localization of SUT mRNA at plasmodesmatal orifices connecting CC and SE suggests RNA transport, potentially mediated by RNA binding proteins. In many organisms, polar RNA transport is mediated through RNA binding proteins interacting with the 3'-UTR and controlling localized protein synthesis. To study mechanisms for trafficking of SUT1, GFP-fusions with and without 3'-UTR were expressed in transgenic plants.

Results

In contrast to plants expressing GFP from the strong SUC2 promoter, in RolC-controlled expression GFP is retained in companion cells. The 3'-UTR of SUT1 affected intracellular distribution of GFP but was insufficient for trafficking of SUT1, GFP or their fusions to SEs. Fusion of GFP to SUT1 did however lead to accumulation of SUT1-GFP in the CC, indicating that trafficking was blocked while translational inhibition of SUT1 mRNA was released in CCs.

Conclusion

A fusion with GFP prevents targeting of the sucrose transporter SUT1 to the SE while leading to accumulation in the CC. The 3'-UTR of SUT1 is insufficient for mobilization of either the fusion or GFP alone. It is conceivable that SUT1-GFP protein transport through PD to SE was blocked due to the presence of GFP, resulting in retention in CC particles. Alternatively, SUT1 mRNA transport through the PD could have been blocked due to insertion of GFP between the SUT1 coding sequence and 3'-UTR.
  相似文献   

14.
Summary Hyperbaric oxygen (HBO) is increasingly used in a number of areas of medical practice, such as selected problem infections and wounds. The beneficial effects of HBO in treating ischemia-related wounds may be mediated by stimulating angiogenesis. We sought to investigate VEGF, the main angiogenic regulator, regulated by HBO in human umbilical vein endothelial cells (HUVECs). In this study, we found that VEGF was up regulated both at mRNA and protein levels in HUVECs treated with HBO dose- and time-dependently. Since there are several AP-1 sites in the VEGF promoter, and the c-Jun/AP-1 is activated through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and extracellular signal regulated kinase (ERK), we further examined the c-Jun, JNK and ERK that might be involved in the VEGF induced by HBO. The VEGF mRNA induced by HBO was blocked by both PD98059 and SP600125, the ERK and JNK inhibitors respectively. HBO induced phospho-ERK and phospho-JNK expressions within 15 min. We further demonstrated that c-Jun phosphorylation was induced within 60 min of HBO treatment. HBO also induced the nuclear AP-1 binding ability within 30–60 min, but the AP-1 induction was blocked by treatment with either the ERK or JNK inhibitor. To verify that the VEGF expression induced by HBO is through the AP-1 trans-activation and VEGF promoter, both the VEGF promoter and AP-1 driving luciferase activity were found increased by the cells treated with HBO. The c-Jun mRNA, which is also driven by AP-1, was also induced by HBO, and the induction of c-Jun was blocked by ERK and JNK inhibitors. We suggest that VEGF induced by HBO is through c-Jun/AP-1 activation, and through simultaneous activation of ERK and JNK pathways.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号