首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
Z H Ye  S L Buranen    C Y Lee 《Journal of bacteriology》1990,172(5):2568-2575
The DNA fragment encoding the integrase and excisionase genes involved in site-specific recombination of staphylococcal bacteriophage phi 11 was cloned and sequenced. The int and xis genes and the recombination site, attP, were highly clustered in a 1.7-kilobase DNA fragment with the gene order attP-int-xis. The int and xis genes were transcribed divergently, with the int gene transcribed toward the attp site and the xis gene transcribed away from the attP site. The deduced Int is a basic protein of 348 residues with an estimated molecular weight of 41,357. In contrast, the deduced Xis is an acidic protein containing 66 amino acids with an estimated molecular weight of 7,621. The site-specific recombination system of phi 11 was compared with that of a closely related bacteriophage, L54a.  相似文献   

2.
Construction of single-copy integration vectors for Staphylococcus aureus.   总被引:9,自引:0,他引:9  
C Y Lee  S L Buranen  Z H Ye 《Gene》1991,103(1):101-105
Single-copy integration vectors suitable for cloning in Staphylococcus aureus have been constructed. Their construction was based on the site-specific recombination system of staphylococcal phage, L54a. The vectors are capable of autonomous replication in Escherichia coli, but they are not endowed with a replication function in S. aureus. As a consequence, establishment of these vectors in S. aureus can only be achieved by the integration system of the phage. Once integrated into the chromosome, the vectors, or their derivatives, were stably inherited even without selective pressure. Because such a vector exists in an integrated form in S. aureus, the gene dosage of the DNA cloned in the vector matches that of the chromosome.  相似文献   

3.
The lysogenization of bacteriophage phi 11 in Staphylococcus aureus occurs by site-specific recombination. The DNA segments containing the attachment sites on the host chromosome, the phage genome, and the two junctions created by insertion of the prophage were cloned, and the nucleotide sequences were determined. The attachment sites share a very short common sequence of 10 base pairs.  相似文献   

4.
5.
6.
The temperate bacteriophage phi adh integrates its genome into the chromosomal DNA of Lactobacillus gasseri ADH by a site-specific recombination process. Southern hybridization analysis of BclI-digested genomic DNA from six relysogenized derivatives of the prophage-cured strain NCK102 displayed phage-chromosomal junction fragments identical to those of the lysogenic parent. The phi adh attachment site sequence, attP, was located within a 365-bp EcoRI-HindIII fragment of phage phi adh. This fragment was cloned and sequenced. DNA sequence analysis revealed striking features common to the attachment sites of other site-specific recombination systems: five direct repeats of the sequence TGTCCCTTTT(C/T) and a 14-bp inverted repeat. Oligonucleotides derived from the sequence of the attP-containing fragment enabled us to amplify predicted junction fragment sequences and thus to identify attL, attR, and attB. The core region was defined as the 16-bp sequence TACACTTCTTAGGAGG. Phage-encoded functions essential for site-specific insertion of phage phi adh were located in a 4.5-kb BclI fragment. This fragment was cloned in plasmid pSA34 to generate the insertional vector pTRK182. Plasmid pTRK182 was introduced into L. gasseri NCK102 by electroporation. Hybridization analysis showed that a single copy of pTRK182 had integrated at the attB site of the NCK102 erythromycin-resistant transformants. This is the first site-specific recombination system described in lactobacilli, as well as the first attP-based site-specific integration vector constructed for L. gasseri ADH.  相似文献   

7.
Although the lambdoid bacteriophage phi 80 and P22 possess site-specific recombination systems analogous to bacteriophage lambda, they have different attachment (att) site specificities. We have identified and determined the nucleotide sequences of the att sites of phi 80 and P22 and have examined the interaction of these sites with purified Escherichia coli integration host factor (IHF). The sizes of the homologous core regions of the att sites vary greatly: P22 has a 46-base pair core, while phi 80 and lambda have 17- and 15-base pair cores, respectively. The core sequences of the three phage show no significant homology, although dispersed regions of homology in arm sequences indicate that the three phage att sites are related. All three att sites have a high A + T composition, and restriction fragments carrying these sites migrate anomalously upon polyacrylamide gel electrophoresis. IHF binds to a site to the left of the common core in the phi 80 and P22 phage att sites (attP) and to a site to the right of the core in P22 attP and attB (the bacterial att site). In the lambda system, IHF interacts with three regions on attP (designated H1, H2, and H') and none on attB (Craig N., and Nash, H.A. (1984) Cell 39, 707-716). Alignment of the IHF sites of all three phage results in a consensus sequence for IHF binding, Pyr-AANNNNTTGATAT. Among the three phage, the number of IHF sites differs; however, the location and orientation of the binding sites in relation to the respective core regions are well conserved. An IHF site analogous to lambda H2 is present in both phi 80 and P22 attP, while a site analogous to lambda H' is present in P22 attP. This conservation suggests that IHF plays a very similar role in the site-specific recombination pathways of all three phage, and that the flanking arm sequences are necessary for phi 80 and P22 attP function, as is the case for lambda attP function. These structural similarities presumably reflect a conservation of the mechanism of site-specific recombination for the three phage.  相似文献   

8.
The integrase gene (int) on the genome of φFSW, which is a temperate bacteriophage of Lactobacillus casei strain Shirota (formerly denoted as S-1), and the four attachment sites on the genomes of the phage and its host were characterized by sequencing. The φFSW integrase was found to belong to the integrase family of site-specific tyrosine recombinase. The attachment sites shared a 40bp common core within which an integrative site-specific recombination occurs. The common core was flanked on one side by an additional segment of high sequence similarity. An integration plasmid, consisting of int, the phage attachment site (attP), and a selectable marker, inserted stably into the bacterial attachment site (attB) within the common core, as did the complete prophage genome at a frequency of more than 10(3)/microg of plasmid DNA. This plasmid was used as a test system for a preliminary mutational analysis of int and attP. The attB common core was located within and near the end of an open reading frame that appears to encode a homolog to glucose 6-phosphate isomerase, an enzyme of the glycolytic pathway. It is unlikely that the prophage integration inactivates this protein, since a change of only the C-terminal amino acid is predicted because of the sequence similarity between attP and attB.  相似文献   

9.
A plasmid system for site-specific integration into and excision and recovery of gene constructs and lacZ gene fusions from the Escherichia coli chromosome was developed. Plasmid suicide vectors utilizing the origin of replication of R6K plasmids and containing the attP sequence of bacteriophage lambda, multiple cloning site, and antibiotic resistance markers facilitate reversible integration into the E. coli chromosome by site-specific recombination. Additional vectors permit construction of lacZ gene fusions in three possible reading frames for recombination with the bacterial chromosome. These suicide vectors can be propagated in newly constructed E. coli strains that harbor different pir alleles. Two helper plasmids that encode the necessary gene products for integration (Int) and excision (Int and Xis) were also constructed. This plasmid system was shown to be a reliable and efficient means to integrate and subsequently recover plasmids from the E. coli attB site.  相似文献   

10.
The DNA sequence of the int-attP region of the small-isometric-headed lactococcal bacteriophage Tuc2009 is presented. In this region, an open reading frame, int, which potentially encodes a protein of 374 amino acids, representing the Tuc2009 integrase, was identified. The nucleotide sequence of the bacteriophage attachment site, attP, and the sequences of attB, attL, and attR in the lysogenic host Lactococcus lactis subsp. cremoris UC509 were determined. A sequence almost identical to the UC509 attB sequence was found to be present in the plasmid-free Tuc2009-resistant L. lactis subsp. cremoris MG1363. This site could be used for the site-specific integration of a plasmid carrying the Tuc2009 int-attP region in the chromosome of MG1363, thereby demonstrating that the application of chromosomal insertion vectors based on bacteriophage integration functions is not limited to the prophage-cured original host strain of the phage.  相似文献   

11.
Lysogenization of Staphylococcus aureus by the serotype F converting bacteriophage phi 13 results in loss of beta-toxin expression. Sequence analysis of the S. aureus beta-toxin gene (hlb), the attachment site (attP)-containing region of phi 13 DNA and the chromosome/bacteriophage DNA junctions of a phi 13 lysogen, revealed that the molecular mechanism of loss of beta-toxin expression was due to insertion of the phi 13 genome into the 5' end of hlb. The insertion site (attB) within hlb contained a 14 base pair core sequence in common with attP and both ends of the integrated linear prophage genome of a phi 13 lysogen. These findings indicate that integration of the phi 13 genome into hlb is site- and orientation-specific.  相似文献   

12.
Cre/lox系统介导的位点特异性重组技术及其应用   总被引:3,自引:0,他引:3  
Cre/lox系统是源于P1噬菌体的一个DNA重组体系,它能导致在特定的DNA序列(loxP位点)处发生定点重组。该系统以将外源基因定点整合到染色体上或将特定DNA片段删除;这种定位重组系统在遗传操作中发挥了重要的作用。  相似文献   

13.
The genetic elements required for the integration of the temperate lactococcal bacteriophage phi LC3 into the chromosome of its bacterial host, Lactococcus lactis subsp. cremoris, were identified and characterized. The phi LC3 phage attachment site, attP, was mapped and sequenced. DNA sequence analysis of attP and of the bacterial attachment site, attB, as well as the two phage-host junctions, attR and attL, in the chromosome of a phi LC3 lysogen, identified a 9-bp common core region, 5'-TTCTTCATG'-3, within which the strand exchange reaction takes place during integration. The attB core sequence is located within the C-terminal part of an open reading frame of unknown function. The phi LC3 integrase gene (int), encoding the phi LC3 site-specific recombinase, was identified and is located adjacent to attP. The phi LC3 Int protein, as deduced from the nucleotide sequence, is a basic protein of 374 amino acids that shares significant sequence similarity with other site-specific recombinases of the integrase family. Phage phi LC3 int- and int-attP-defective mutants, conferring an abortive lysogenic phenotype, were constructed.  相似文献   

14.
Different regions of RF DNA from the filamentous bacteriophage phiLf were cloned in Escherichia coli vectors that can not be maintained in Xanthomonas. After introduction into X. campestris pv. campestris 17 (Xc17), most of these constructs were found to integrate into the host chromosome, either by recA-dependent homologous recombination or recA-independent site-specific integration. Mutations in himA, which codes for the alpha-subunit of the Integration Host Factor, does not affect the integration. Integration occurs into a chromosomal region which harbors a copy of a defective phage (4445 bp) that shares a high degree of identity with the phiLf genome. While various parts of the 4445-bp region are susceptible to homologous recombination, site-specific integration requires the attB sequence on the chromosome and the phage attP. The attB shows a high level of sequence identity (22 out of 28 bp) to the dif site required for E. coli Xer site-specific recombination, including the 6-bp central region, and 8/11 identity in both the left XerC-binding arm and the right XerD-binding arm, with the innermost 5 nt of the arms forming a dyad symmetry that is also present in dif. The attP has the same central region and shows 10/11 identity to the dif site in the left arm, but the sequence of the right arm is less conserved than that of attB. The smallest regions still capable of mediating integration are a cloned 72-bp phiLf attP-containing sequence and a 51-bp Xc17 attB-containing sequence, which was reinserted into the Xc17 chromosome after the 4445-bp region had been deleted, indicating that accessory sequences are not necessary and that the integrase required for site-specific integration is neither specified by the 4445-bp Xc17 chromosomal region nor encoded by the phiLf genome.  相似文献   

15.
The deletion mutants b508 and b522 of bacteriophage lambda both end within the attachment site. The formation of such deletions is dependent upon the presence of intact integrase, and thus the deletion endpoints may be related to the normal crossover site in site-specific recombination. We have determined the DNA sequences of the attachment site regions of these deletions. Comparison of the sequences with lambda wildtype shows that both the deletions end within the central common homology region but at different positions. The consequences of these findings for current models of site-specific recombination are discussed.  相似文献   

16.
S Kuhstoss  M A Richardson  R N Rao 《Gene》1991,97(1):143-146
Cloning vectors based on the Streptomyces ambofaciens plasmid pSAM2 and the streptomycete phage phi C31 were developed for use in Streptomyces spp. These vectors replicate in Escherichia coli but integrate by site-specific recombination in Streptomyces spp. Both pSAM2-based and phi C31-based vectors transformed a number of different Streptomyces spp; however, the phi C31-based vectors consistently transformed at higher frequencies than pSAM2-based vectors. Southern analysis indicated that the phi C31-based vectors integrated at a unique site in the S. ambofaciens chromosome, while the pSAM2-based vectors gave complex patterns which could indicate structural instability or use of multiple loci. Both types of vectors utilize the apramycin (Am)-resistance gene which can be selected in E. coli and Streptomyces spp. with either Am or the commercially available antibiotic Geneticin (G418).  相似文献   

17.
Siegel RW  Jain R  Bradbury A 《FEBS letters》2001,505(3):467-473
The site-specific recombination system of bacteriophage P1 is composed of the Cre recombinase that recognizes a 34-bp loxP site. The Cre/loxP system has been extensively used to manipulate eukaryotic genomes for functional genomic investigations. The creation of additional heterologous loxP sequences potentially expands the utility of this system, but only if these loxP sequences do not recombine with one another. We have developed a stringent in vivo assay to examine the degree of recombination between all combinations of each previously published heterologous loxP sequence. As expected, homologous loxP sequences efficiently underwent Cre-mediated recombination. However, many of the heterologous loxP pairs were able to support recombination with rates varying from 5 to 100%. Some of these loxP sequences have previously been reported to be non-compatible with one another. Our study also confirmed other heterologous loxP pairs that had previously been shown to be non-compatible, as well as defined additional combinations that could be used in designing new recombination vectors.  相似文献   

18.
The genome of temperate phage phiFC1 integrates into the chromosome of Enterococcus faecalis KBL 703 via site-specific recombination. In this study, an integration vector containing the attP site and putative integrase gene mj1 of phage phiFC1 was constructed. A 2,744-bp fragment which included the attP site and mj1 was inserted into a pUC19 derivative containing the cat gene to construct pEMJ1-1. E. faecalis KBL 707, which does not contain the bacteriophage but which has a putative attB site within its genome, could be transformed by pEMJ1-1. Southern hybridization, PCR amplification, and DNA sequencing revealed that pEMJ1-1 was integrated specifically at the putative attB site within the E. faecalis KBL 707 chromosome. This observation suggested that the 2,744-bp fragment carrying mj1 and the attP site of phage phiFC1 was sufficient for site-specific recombination and that pEMJ1-1 could be used as a site-specific integration vector. The transformation efficiency of pEMJ1-1 was as high as 6 x 10(3) transformants/microg of DNA. In addition, a vector (pATTB1) containing the 290-bp attB region was constructed. pATTB1 was transformed into Escherichia coli containing a derivative of the pET14b vector carrying attP and mj1. This resulted in the formation of chimeric plasmids by site-specific recombination between the cloned attB and attP sequences. The results indicate that the integration vector system based on the site-specific recombination mechanism of phage phiFC1 can be used for genetic engineering in E. faecalis and in other hosts.  相似文献   

19.
R W Siegel  R Jain  A Bradbury 《FEBS letters》2001,499(1-2):147-153
The site-specific recombination system of bacteriophage P1 is composed of the Cre recombinase that recognizes a 34-bp loxP site. The Cre/loxP system has been extensively used to manipulate eukaryotic genomes for functional genomic investigations. The creation of additional heterologous loxP sequences potentially expands the utility of this system, but only if these loxP sequences do not recombine with one another. We have developed a stringent in vivo assay to examine the degree of recombination between all combinations of each previously published heterologous loxP sequence. As expected, homologous loxP sequences efficiently underwent Cre-mediated recombination. However, many of the heterologous loxP pairs were able to support recombination with rates varying from 5 to 100%. Some of these loxP sequences have previously been reported to be non-compatible with one another. Our study also confirmed other heterologous loxP pairs that had previously been shown to be non-compatible, as well as defined additional combinations that could be used in designing new recombination vectors.  相似文献   

20.
We constructed a series of plasmids that allow the insertion of cloned DNA in the Escherichia coli chromosome by site-specific integration into the bacteriophage HK022 bacterial attachment site. These plasmids make use of a ColE1 origin of replication, the phage HK022 attachment site attP, antibiotic resistance genes for selection and unique restriction sites. Circularisation of non-replicative fragments containing the HK022 attachment site attP is performed in vitro and site-specific integration of attP containing molecules is ensured by transfer into cells transiently expressing the HK022 integrase gene carried by a thermosensitive replicon. Insertion is very efficient and the inserted fragments are stably maintained without selection pressure. Since integrative fragments carry rarely used antibiotic markers conferring resistance to antibiotics hygromycin or apramycin, they can be used in most E. coli strains in conjunction with many replicative or integrative vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号