首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A quantitative trait locus (QTL), dth1.1, was associated with transgressive variation for days to heading in an advanced backcross population derived from the Oryza sativa variety Jefferson and an accession of the wild rice relative Oryza rufipogon. A series of near-isogenic lines (NILs) containing different O. rufipogon introgressions across the target region were constructed to dissect dth1.1 using substitution mapping. In contrast to the late-flowering O. rufipogon parent, O. rufipogon alleles in the substitution lines caused early flowering under both short- and long-day lengths and provided evidence for at least two distinct sub-QTL: dth1.1a and dth1.1b. Potential candidate genes underlying these sub-QTL include genes with sequence similarity to Arabidopsis GI, FT, SOC1, and EMF1, and Pharbitis nil PNZIP. Evidence from families with nontarget O. rufipogon introgressions in combination with dth1.1 alleles also detected an early flowering QTL on chromosome 4 and a late-flowering QTL on chromosome 6 and provided evidence for additional sub-QTL in the dth1.1 region. The availability of a series of near-isogenic lines with alleles introgressed from a wild relative of rice provides an opportunity to better understand the molecular basis of transgressive variation in a quantitative trait.  相似文献   

2.
A set of introgression lines (ILs) containing chromosomal segments from O. rufipogon (IRGC 105491), a wild relative of O. sativa, in the genetic background of an elite US variety, cv. Jefferson, was developed to confirm the performance of six yield-enhancing quantitative trait loci (QTL). Fifty BC3F3 ILs containing homozygous O. rufipogon introgressions at each of the target QTL regions, and as few background introgressions as possible, were selected for evaluation of yield and 14 yield-related traits in field studies conducted over 2 years at four locations in the southern USA. Performance of the IL families was compared with three commercial inbreds and one hybrid variety. IL families carrying introgressions from the low-yielding wild parent at the QTL yld2.1 and yld6.1 yielded 27.7 and 26.1 % more than Jefferson, respectively. IL yld2A, which possesses yld2.1, also performed well under alternate wetting and drying conditions in two field locations. After the first year of field trials, 10 of the top-performing BC3F4 families, representing five of the QTL targets, were genotyped with an Illumina 1,536 assay to define the size and location of the wild introgressions. BC3F4 families with the fewest background introgressions were backcrossed to Jefferson and selfed. The resulting BC4F2 families were screened with targeted single nucleotide polymorphism assays to identify individuals carrying homozygous introgressions across the target QTL. Twelve ILs, representing each of the six QTL targets, have been submitted to the Genetic Stocks Oryza Collection for studies on transgressive variation and as interspecific pre-breeding lines.  相似文献   

3.
Modulation of flowering responses in different Nicotiana varieties   总被引:1,自引:0,他引:1  
We have identified and characterized a FLOWERING PROMOTING FACTOR 1(FPF1) gene from tobacco (NtFPF1). Over-expression of NtFPF1 leads to early flowering in the day-neutral tobacco Nicotiana tabacum cv. Hicks, and under inductive photoperiods also in the short-day Nicotiana tabacum cv. Hicks Maryland Mammoth (MM) tobacco and the long-day plant Nicotiana sylvestris. N. sylvestris wild-type plants remained in the rosette stage and never flowered under non-inductive short-days, whereas 35S::NtFPF1 transgenic plants bolted but did not flower. However, if treated with gibberellins, transgenic N. sylvestrisplants flowered much faster under non-inductive short days than corresponding wild type plants, indicating an additive effect of gibberellins and the NtFPF1 protein in flowering time control. The day-neutral wild type cv. Hicks and the short-day cv. Hicks MM plants exhibit an initial rosette stage, both under short- and long-days. In the transgenic lines, this rosette stage was completely abolished. Wild-type plants of cv. Hicks MM never flowered under long days; however, all transgenic lines over-expressing NtFPF1 flowered under this otherwise non-inductive photoperiod.  相似文献   

4.
Flowering was initiated by the integration of environmental signals such as day-length with the internal development status in Arabidopsis, a facultative long-day plant. The photoperiodic flowering involves two key components, CONSTANS and FT, whereas the autonomous flowering is operated through a central quantitative floral repressor, FLC, and several other genes that act upstream of FLC. SOC1 acts downstream to integrate the flowering signals from the two pathways. Here, we report that SHB1 plays dual roles in both photoperiodic and autonomous flowering. shb1-D, a gain-of-function mutant, flowered early and shb1, a loss-of-function allele, flowered late under both long days and short days. The shb1-D mutation activated the expression of CO, FT, and SOC1 under both long and short days, and however, the co-2 mutation attenuated the shb1-D activated expression of FT and SOC1 only under long days but not short days. The shb1-D or shb1 mutations also reduced and increased, respectively, the expression of FLC under both long and short days. Transgenic remedy of FLC to wide-type level in shb1-D background also reverted shb1-D flowering and FT or SOC1 expression to wild type mostly under short days. Furthermore, the shb1-D suppression on FLC expression is likely operated through LD as ld-3 blocked this suppression and SHB1 appears to act upstream of LD. In summary, SHB1 represents signaling steps that regulate CO expression in leaves and LD or FLC expression in either leaves or shoot apical meristem, contributing to a threshold expression of SOC1 in shoot apical meristem for floral initiation.  相似文献   

5.
6.
Due to the remarkable adaptability to various environments, rice varieties with diverse flowering times have been domesticated or improved from Oryza rufipogon. Detailed knowledge of the genetic factors controlling flowering time will facilitate understanding the adaptation mechanism in cultivated rice and enable breeders to design appropriate genotypes for distinct preferences. In this study, four genes (Hd1, DTH8, Ghd7 and OsPRR37) in a rice long‐day suppression pathway were collected and sequenced in 154, 74, 69 and 62 varieties of cultivated rice (Oryza sativa) respectively. Under long‐day conditions, varieties with nonfunctional alleles flowered significantly earlier than those with functional alleles. However, the four genes have different genetic effects in the regulation of flowering time: Hd1 and OsPRR37 are major genes that generally regulate rice flowering time for all varieties, while DTH8 and Ghd7 only regulate regional rice varieties. Geographic analysis and network studies suggested that the nonfunctional alleles of these suppression loci with regional adaptability were derived recently and independently. Alleles with regional adaptability should be taken into consideration for genetic improvement. The rich genetic variations in these four genes, which adapt rice to different environments, provide the flexibility needed for breeding rice varieties with diverse flowering times.  相似文献   

7.
The optimal conditions for the germination, growth, and flowering of an Indian strain of Arabidopsis thaliana were investigated in sterile culture. Seeds require a cold treatment to germinate, and the most effective temperature is 8?C for 48 hours. Germination after vernalization is promoted by red light and inhibited by far-red. Unvernalized seeds germinated after 31 days and flower buds appeared in 61 days. On verbalization and subsequent transfer to a temperature of 25?C and a light intensity of 4300 lux of fluorescent light, plants flowered in 25 days. Under 7000 lux of light rich in both blue and red region of the spectum, plants flowered in only 12 days. A minimum of five long-day photocyeles appeared to be necessary for flowering. Kinetin (10?7M) and gibberellic acid (10?7M, 10?6M) accelerated flower formation. Kinetin and 2,4-D also catised specific types of callussing from different regions of the plant.  相似文献   

8.
The mutation gigantea (gi) is recessive and belongs to the late-flowering mutations in Arabidopsis thaliana. The late-flowering mutations result in a pronounced delay in flowering due to a prolonged phase of vegetative growth, which is manifested by an increased number of primary foliage leaves in the rosette (i.e. vegetative nodes). To examine the nature of the gi mutation, detailed phenotypic analysis was carried out for three representative mutant alleles. The results indicate that gi mutants have a defect in the promotion of the floral induction process by long-day photoperiods and not in the flowering process per se. Temperature-shift experiments using a partially conditional allele were employed to determine the timing of the functional requirement for the product of the GI locus. The end of the deduced functional period corresponds to the period at which transition of the apical meristem from the vegetative to the reproductive phase occurs. Such timing is in good agreement with the postulated role of the GI locus. These results demonstrate that the GI locus is involved in the promotion of floral initiation (entrance of the meristem into the transitional stage) by long-day photoperiods.  相似文献   

9.
In the annual long-day plant Arabidopsis thaliana, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv TERMINAL FLOWER1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv FLOWERING LOCUS T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.  相似文献   

10.
The aim was to produce a tetraploid form of Buddleia globosa to facilitate introgression of yellow flower colour into B. davidii, which is naturally tetraploid. Protocols were established for the micropropagation of B. globosa and tetraploid plants were obtained by application in vitro of colchicine to pre-cultured excised nodal sections. Three concentrations of colchicine were applied (0.01%, 0.05% and 0.1% w/v) for 1, 2 or 3 days. At 0.01% tetraploids were produced only after 2 days of application. All other treatments produced at least one tetraploid. The colchicine technique was extremely effective: of 29 lines tested, 19 were tetraploid and 5 were mixoploid. The vegetative characteristics of these tetraploids are described and the flowering characteristics of the three that flowered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Thakare D  Kumudini S  Dinkins RD 《Planta》2011,234(5):933-943
A small gene family of phosphatidyl ethanolamine-binding proteins (PEBP) has been shown to function as key regulators in flowering; in Arabidopsis thaliana the FT protein promotes flowering whilst the closely related TFL1 protein represses flowering. Control of flowering time in soybean [Glycine max (L.) Merrill] is important for geographic adaptation and maximizing yield. Soybean breeders have identified a series of loci, the E-genes, that control photoperiod-mediated flowering time, yet how these loci control flowering is poorly understood. The objectives of this study were to evaluate the expression of GmFT-like genes in the E1 near-isogenic line (NIL) background. Of the 20 closely related PEBP proteins in the soybean genome, ten are similar to the Arabidopsis FT protein. Expression analysis of these ten GmFT-like genes confirmed that only two are detectable in the conditions tested. Further analysis of these two genes in the E1 NILs grown under short-day (SD) and long-day (LD) conditions showed a diurnal expression and tissue specificity expression commensurate with soybean flowering time under SD and LD conditions, suggesting that these were good candidates for flowering induction in soybean. Arabidopsis ft mutant lines flowered early when transformed with the two soybean genes, suggesting that the soybean genes can complement the Arabidopsis FT function. Flowering time in E1 NILs is consistent with the differential expression of the two GmFT-like genes under SD and LD conditions, suggesting that the E1 locus, at least in part, impacts time to flowering through the regulation of soybean FT expression.  相似文献   

12.
Lemna perpusilla 6746, a short-day duckweed, flowered undercontinuous illumination on M-sucrose medium containing CuSO4,AgNO3 and HgCl2, which are SH-inhibitors. The optimum concentrationsof CuSO4, AgNO3 and HgCl2 were 5, 1 and 20 µM, respectively.Other metal ions tested were ineffective, but at least two otherSHinhibitors, potassium ferricyanide and iodoacetamide, alsoinduced long-day flowering at the concentrations of 0.1-1 µM. Adding 50 µM EDTA to the medium prevented the effect ofcupric ion, but not that of other SH-inhibitors. EDTA at 200µM induced some long-day flowering when added to a mediumwith no SH-inhibitors. It also permitted some flowering whenadded together with cupric ion, and accelerated flowering inthe presence of the other SHinhibitors listed above. EDTA andSH-inhibitor effects appeared to be additive. (Received May 25, 1973; )  相似文献   

13.
Zhong X  Dai X  Xv J  Wu H  Liu B  Li H 《Molecular biology reports》2012,39(6):6967-6974
A MADS box gene AGL20/SOC1 is a main integrator in Arabidopsis flowering pathway whose structure and function are highly conserved in many plant species. A soybean MADS box gene GmGAL1 (G lycine max A GAMOUS L ike 1) as a homolog of AGL20/SOC1, was cloned from soybean cultivar Kennong18 and its function was investigated in transgenic Arabidopsis lines. Sequence comparisons showed that the closest homolog gene to GmGAL1 is AGL20/SOC1 in Arabidopsis and VuSOC1 in Vigna unguiculata. We investigated the expression level of GmGAL1 using quantitative real-time PCR, and the result showed that GmGAL1 was regulated by a circadian mechanism and its expression oscillated at a cycle of 24 h. The expression level of GmGAL1 was fluctuated in diverse tissues/organs and developmental stages. Considering its expression can be detected in different tissues throughout the life cycle and its protein localized in cytoplasm in Arabidopsis protoplasm, we proposed that GmGAL1 may be a multifunctional gene in the context of the soybean development. Ectopic expression of GmGAL1 in Arabidopsis enhanced flowering under long-day condition and partially rescued soc1 late flowering type.  相似文献   

14.
15.
16.
17.
Summary The flowering behaviour of 17 Pisum mutants and 20 recombinants was studied under three different temperatures using long-day phytotron conditions. A constant low temperature of 12.5 ° C led to a strong delay in flowering in all the genotypes tested but distinct relative differences could be found between them. Relative differences were also present with regard to speed of ontogenetic development under a permanent high temperature of 25.5 °C or under an alternating change between low and high temperature. Under the low temperature, recombinants R 20D and R 20E, carrying gene efr for earliness, entered the flowering period more than 4 weeks later than the donor of efr, demonstrating thereby a negative influence of one of the other mutant genes on efr. The high temperature of 25 °C influenced the flowering behaviour of 4 fasciated genotypes negatively — in contrast to the other strains studied. The plants of recombinant R 405 produced only tiny flower buds under these conditions. None of the plants of recombinant R 142F flowered under either the constant low or high temperature — they need the change of low and higher temperature for normal flower formation. The experiments show that most of the genotypes tested react specifically to the three temperature conditions offered to them.  相似文献   

18.
In vitro culture of long-day plant Chenopodium murale L was established. The effects of photoperiod, glucose and gibberellic acid (GA3) on flowering and growth in vitro were investigated. Oscillatory changes of photoperiodic sensitivity were noticeable with regard to plant age. The plants induced at the phase of the 1st and the 3rd pair of leaves flowered to higher degree than those induced at the phase of 2nd pair. Plants induced at the phase of the 1st pair of leaves flowered to 17 % on 5 % glucose-containing medium and the addition of 5 mg dm-3 GA3 resulted in maximum flowering (43 %). Neither glucose nor GA3 were able to compensate for photoperiodic requirements for flowering. Hypocotyl growth was decreased and the 1st internode elongation and development of leaves were increased due to inductive photoperiodic conditions, as compared to non-inductive ones.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号