首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
We investigated the distribution of Y-chromosome haplotype using 19 Y-SNPs in Han Chinese populations from 22 provinces of China. Our data indicate distinctive patterns of Y chromosome between southern and northern Han Chinese populations. The southern populations are much more polymorphic than northern populations. The latter has only a subset of the southern haplotypes. This result confirms the genetic difference observed between southern and northern ethnic populations in East Asia. It supports the hypothesis that the first settlement of modern humans of African origin occurred in the southern part of East Asia during the last Ice Age, and a northward migration led to the peopling of northern China.  相似文献   

2.
The population history of Southeast (SE) China remains poorly understood due to the sparse sampling of present-day populations and limited modeling with ancient genomic data. We report genome-wide genotyping data from 207 present-day Han Chinese and Hmong-Mien (HM)-speaking She people from Fujian and Taiwan Island, SE China. We coanalyzed 66 Early Neolithic to Iron Age ancient Fujian and Taiwan Island individuals obtained from previously published works to explore the genetic continuity and admixture based on patterns of genetic variations of the high-resolution time transect. We found the genetic differentiation between northern and southern East Asians was defined by a north–south East Asian genetic cline and our studied southern East Asians were clustered in the southern end of this cline. The southeastern coastal modern East Asians are genetically similar to other southern indigenous groups as well as geographically close to Neolithic-to-Iron Age populations, but they also shared excess alleles with post-Neolithic Yellow River ancients, which suggested a southward gene flow on the modern southern coastal gene pool. In addition, we identified one new HM genetic cline in East Asia with the coastal Fujian HM-speaking She localizing at the intersection between HM and Han clines. She people show stronger genetic affinity with southern East Asian indigenous populations, with the main ancestry deriving from groups related to southeastern ancient indigenous rice farmers. The southeastern Han Chinese could be modeled with the primary ancestry deriving from the group related to the Yellow River Basin millet farmers and the remaining from groups related to rice farmers, which was consistent with the northern China origin of modern southeastern Han Chinese and in line with the historically and archaeologically attested southward migrations of Han people and their ancestors. Our estimated north–south admixture time ranges based on the decay of the linkage disequilibrium spanned from the Bronze Age to historic periods, suggesting the recent large-scale population migrations and subsequent admixture participated in the formation of modern Han in SE Asia.  相似文献   

3.
The Han Chinese are the world's largest ethnic group residing across China. Shaanxi province in northern China was a pastoral–agricultural interlacing region sensitive to climate change since Neolithic times, which makes it a vital place for studying population dynamics. However, genetic studies of Shaanxi Han are underrepresented due to the lack of high-density sampling and genome-wide data. Here, we genotyped 700 000 single nucleotide polymorphisms (SNPs) in 200 Han individuals from nine populations in Shaanxi and compared with available modern and ancient Eurasian individuals. We revealed a north–south genetic cline in Han Chinese with Shaanxi Han locating at the northern side of the cline. We detected the western Eurasian-related admixture in Shaanxi populations, especially in Guanzhong and Shanbei Han Chinese in proportions of 2%–4.6%. Shaanxi Han were suggested to derive a large part of ancestry (39%–69%) from a lineage that also contributed largely to ancient and present-day Tibetans (85%) as well as southern Han, supporting the common northern China origin of modern Sino-Tibetan-speaking populations and southwestward expansion of millet farmers from the middle-upper Yellow River Basin to the Tibetan Plateau and to southern China. The rest of the ancestry of Shaanxi Han was from a lineage closely related to ancient and present-day Austronesian and Tai-Kadai speaking populations in southern China and Southeast Asia. We also observed a genetic substructure in Shaanxi Han in terms of north–south-related ancestry corresponding well to the latitudes. Maternal mitochondrial DNA and paternal Y-chromosome lineages further demonstrated the aforementioned admixture pattern of Han Chinese in Shaanxi province.  相似文献   

4.
Archaeological, genetic, and linguistic evidence has supported the idea that northern China is the original center of modern Sino‐Tibetan‐speaking populations. However, the demographic history of subsequent southward migration and genetic admixture of Han Chinese with surrounding indigenous populations remain uncharacterized, and the language shifts and assimilations accompanied by movement of people, or just an adaptation of cultural ideas among populations in central China is still unclear, especially for Tibeto‐Burman‐speaking Tujia and central Han Chinese populations. To resolve this, we genotyped over 60K genome‐wide markers in 505 unrelated individuals from 63 indigenous populations. Our results showed both studied Han and Tujia were at the intermediate position in the modern East Asian North–South genetic cline and there was a correlation between the genetic composition and the latitude. We observed the strong genetic assimilation between Tujia people and central Han Chinese, which suggested massive population movements and genetic admixture under language borrowing. Tujia and central Han Chinese could be modeled as a two‐way admixture deriving primary ancestry from a northern ancestral population closely related to the ancient DevilsCave and present‐day Tibetans and a southern ancestral population closely related to the present‐day Tai‐Kadai and Austronesian‐speaking groups. The ancestral northern population we suspect to be related to the Neolithic millet farming groups in the Yellow River Basin or central China. We showed that the newly genotyped populations in Hubei Province had a higher proportion of DevilsCave or modern Tungusic/Mongolic‐related northern ancestries, while the Hunan populations harbored a higher proportion of Austronesian/Tai‐Kadai‐related southern ancestries.  相似文献   

5.
Hu SP  Li H  Zhang FH  Huang LQ  Lu Y 《Biochemical genetics》2011,49(7-8):483-498
We investigated the Y chromosome of various Chinese populations to determine the patrilineal origin of the Chaoshanese population. Admixture analysis of six specific Y short tandem repeat (STR) loci in 6,292 individual samples taken from 51 populations, including Chaoshanese and Minnanese of our earlier studies, showed that over 85% of the Chaoshanese Y chromosomes were derived from the Central China Han (M (RH): 0.8614; M (BE): 1.1868?±?0.2054), and a very small portion were from the southern aborigines. These results support a Central China Han origin of the Chaoshanese and additionally reveal that males from the Central China Han were the predominant contributor to the patrilineal genetics of the Chaoshanese. A phylogenetic tree and analysis of molecular variance signified a strong association between Y chromosomes of Chinese populations and their linguistic affiliations, revealing a coevolution of Y chromosome diversity and languages in East Asia.  相似文献   

6.
Genetic studies of human diversity in East Asia   总被引:5,自引:0,他引:5  
East Asia is one of the most important regions for studying evolution and genetic diversity of human populations. Recognizing the relevance of characterizing the genetic diversity and structure of East Asian populations for understanding their genetic history and designing and interpreting genetic studies of human diseases, in recent years researchers in China have made substantial efforts to collect samples and generate data especially for markers on Y chromosomes and mtDNA. The hallmark of these efforts is the discovery and confirmation of consistent distinction between northern and southern East Asian populations at genetic markers across the genome. With the confirmation of an African origin for East Asian populations and the observation of a dominating impact of the gene flow entering East Asia from the south in early human settlement, interpretation of the north-south division in this context poses the challenge to the field. Other areas of interest that have been studied include the gene flow between East Asia and its neighbouring regions (i.e. Central Asia, the Sub-continent, America and the Pacific Islands), the origin of Sino-Tibetan populations and expansion of the Chinese.  相似文献   

7.
The Northeast area of China is a cross region between East Asia and Siberia. Although five populations from this area have been studied in maternal lineage, little is known about the genetics of other populations. In this study, forty-seven Manchu individuals were analyzed using a mitochondrial DNA marker, and fourteen mitochondrial DNA haplogroups, the representative haplogroups of east Eurasian, were identified. All analyses showed that Manchu were close to the neighboring populations such as Mongolian, Korean and northern Han Chinese, and were far from the other populations who lived in the cradle of Manchu, suggesting that the Manchu integrated gradually with natives following its southward migration.  相似文献   

8.
《遗传学报》2021,48(10):899-907
Southern East Asia, including Guangxi and Fujian provinces in China, is home to diverse ethnic groups, languages, and cultures. Previous studies suggest a high complexity regarding population dynamics and the history of southern East Asians. However, large-scale genetic studies on ancient populations in this region are hindered by limited sample preservation. Here, using highly efficient DNA capture techniques, we obtain 48 complete mitochondrial genomes of individuals from Guangxi and Fujian in China and reconstruct their maternal genetic history over the past 12,000 years. We find a strong connection between southern East Asians dating to ~12,000–6000 years ago and present-day Southeast Asians. In addition, stronger genetic affinities to northern East Asians are observed in historical southern East Asians than Neolithic southern East Asians, suggesting increased interactions between northern and southern East Asians over time. Overall, we reveal dynamic connections between ancient southern East Asians and populations located in surrounding regions, as well as a shift in maternal genetic structure within the populations over time.  相似文献   

9.
The emerging limbs and twigs of the East Asian mtDNA tree   总被引:33,自引:0,他引:33  
We determine the phylogenetic backbone of the East Asian mtDNA tree by using published complete mtDNA sequences and assessing both coding and control region variation in 69 Han individuals from southern China. This approach assists in the interpretation of published mtDNA data on East Asians based on either control region sequencing or restriction fragment length polymorphism (RFLP) typing. Our results confirm that the East Asian mtDNA pool is locally region-specific and completely covered by the two superhaplogroups M and N. The phylogenetic partitioning based on complete mtDNA sequences corroborates existing RFLP-based classification of Asian mtDNA types and supports the distinction between northern and southern populations. We describe new haplogroups M7, M8, M9, N9, and R9 and demonstrate by way of example that hierarchically subdividing the major branches of the mtDNA tree aids in recognizing the settlement processes of any particular region in appropriate time scale. This is illustrated by the characteristically southern distribution of haplogroup M7 in East Asia, whereas its daughter-groups, M7a and M7b2, specific for Japanese and Korean populations, testify to a presumably (pre-)Jomon contribution to the modern mtDNA pool of Japan.  相似文献   

10.
Hmong-Mien (H-M) is a major language family in East Asia, and its speakers distribute primarily in southern China and Southeast Asia. To date, genetic studies on H-M speaking populations are virtually absent in the literature. In this report, we present the results of an analysis of genetic variations in the mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS1) region and diagnostic variants in the coding regions in 537 individuals sampled from 17 H-M populations across East Asia. The analysis showed that the haplogroups that are predominant in southern East Asia, including B, R9, N9a, and M7, account for 63% (ranging from 45% to 90%) of mtDNAs in H-M populations. Furthermore, analysis of molecular variance (AMOVA), phylogenetic tree analysis, and principal component (PC) analysis demonstrate closer relatedness between H-M and other southern East Asians, suggesting a general southern origin of maternal lineages in the H-M populations. The estimated ages of the mtDNA lineages that are specific to H-M coincide with those based on archeological cultures that have been associated with H-M. Analysis of genetic distance and phylogenetic tree indicated some extent of difference between the Hmong and the Mien populations. Together with the higher frequency of north-dominating lineages observed in the Hmong people, our results indicate that the Hmong populations had experienced more contact with the northern East Asians, a finding consistent with historical evidence. Moreover, our data defined some new (sub-)haplogroups (A6, B4e, B4f, C5, F1a1, F1a1a, and R9c), which will direct further efforts to improve the phylogeny of East Asian mtDNAs.  相似文献   

11.
The Y-chromosome haplogroup N-M231 (Hg N) is distributed widely in eastern and central Asia, Siberia, as well as in eastern and northern Europe. Previous studies suggested a counterclockwise prehistoric migration of Hg N from eastern Asia to eastern and northern Europe. However, the root of this Y chromosome lineage and its detailed dispersal pattern across eastern Asia are still unclear. We analyzed haplogroup profiles and phylogeographic patterns of 1,570 Hg N individuals from 20,826 males in 359 populations across Eurasia. We first genotyped 6,371 males from 169 populations in China and Cambodia, and generated data of 360 Hg N individuals, and then combined published data on 1,210 Hg N individuals from Japanese, Southeast Asian, Siberian, European and Central Asian populations. The results showed that the sub-haplogroups of Hg N have a distinct geographical distribution. The highest Y-STR diversity of the ancestral Hg N sub-haplogroups was observed in the southern part of mainland East Asia, and further phylogeographic analyses supports an origin of Hg N in southern China. Combined with previous data, we propose that the early northward dispersal of Hg N started from southern China about 21 thousand years ago (kya), expanding into northern China 12–18 kya, and reaching further north to Siberia about 12–14 kya before a population expansion and westward migration into Central Asia and eastern/northern Europe around 8.0–10.0 kya. This northward migration of Hg N likewise coincides with retreating ice sheets after the Last Glacial Maximum (22–18 kya) in mainland East Asia.  相似文献   

12.
The Han Chinese are the largest ethnic group in the world, and their origins, development, and expansion are complex. Many genetic studies have shown that Han Chinese can be divided into two distinct groups: northern Han Chinese and southern Han Chinese. The genetic history of the southern Han Chinese has been well studied. However, the genetic history of the northern Han Chinese is still obscure. In order to gain insight into the genetic history of the northern Han Chinese, 89 human remains were sampled from the Hengbei site which is located in the Central Plain and dates back to a key transitional period during the rise of the Han Chinese (approximately 3,000 years ago). We used 64 authentic mtDNA data obtained in this study, 27 Y chromosome SNP data profiles from previously studied Hengbei samples, and genetic datasets of the current Chinese populations and two ancient northern Chinese populations to analyze the relationship between the ancient people of Hengbei and present-day northern Han Chinese. We used a wide range of population genetic analyses, including principal component analyses, shared mtDNA haplotype analyses, and geographic mapping of maternal genetic distances. The results show that the ancient people of Hengbei bore a strong genetic resemblance to present-day northern Han Chinese and were genetically distinct from other present-day Chinese populations and two ancient populations. These findings suggest that the genetic structure of northern Han Chinese was already shaped 3,000 years ago in the Central Plain area.  相似文献   

13.
We have analyzed 105 autosomal polymorphic short tandem repeat (STR) loci for nine East and South-eastern Asian populations (two Japanese, five Han Chinese, Thai, and Burmese populations) and a Caucasian population using a multiplex PCR typing system. All the STR loci are genomewide tetranucleotide repeat markers of which the total number of observed alleles and the observed heterozygosity were 756 and 0.743, respectively, for Japanese populations. Phylogenetic analysis for these allele frequency data suggested that the Japanese populations are more closely related with southern Chinese populations than central and/or northern ones. STRUCTURE program analysis revealed the almost clearly divided and accountable population structure at K=2–6, that the two Japanese populations always formed one group separated from the other populations and never belong to different groups at K≥3. Furthermore, our new allele frequency data for 91 loci were analyzed with those for 52 worldwide populations published by previous studies. Phylogenetic and multidimensional scaling (MDS) analyses indicated that Asian populations with large population size (six Han Chinese, three Japanese, two Southeast Asia) formed one distinct cluster and are closer to each other than other ethnic minorities in east and Southeast Asia. This pattern may be the caviar of comparing populations with greatly differing population sizes when STR loci were analyzed.  相似文献   

14.
目的 族群地域、体貌特征等表型是基因型与环境共同作用的结果。大量基因组学研究表明,汉族人群具有混合特征,内部存在明显的南北遗传差异。本研究旨在探索研究表观基因组在中国南北方汉族人群之间是否存在差异,并筛选差异遗传位点。方法 使用GLINT软件对483份汉族样本的全基因组甲基化芯片数据进行EWAS分析,使用Lasso回归方法筛选位点。使用多元逻辑回归算法构建南北方汉族人群预测模型,通过十折交叉验证的方法评估。结果 筛选出一组南北方汉族之间差异显著的CpG位点,准确性为99.03%,Kappa系数为0.979 6。结论 本研究表明南北方汉族人群之间存在表观遗传差异,本研究为进一步开展不同地域汉族人群之间的表观遗传差异研究奠定了基础。  相似文献   

15.
Allele frequencies for 15 short tandem repeat (STR) loci were obtained from a Chinese Han population in Henan province of middle China. No deviation from Hardy–Weinberg equilibrium was observed for the STR loci except for D3S1358. The 15 STR loci are potentially useful for paternity testing and forensic casework in the Henan population. A phylogenetic tree based on CODIS STR allele frequencies of 25 Han populations revealed noticeable but far less clear distinctions between southern and northern Chinese populations; the Henan Han population was located at an intermediate position between south and north Chinese Han populations, relatively closer to Chaoshan and Minnan Han. Moreover, admixture analysis showed a large proportion of Central Plains Han origin in Chaoshanese and Minnanese. Admixture and phylogenetic analysis also reflected the genetic similarity shared by these two groups.  相似文献   

16.
The mitten crab, Eriocheir sensu stricto , is economically important in East Asia, although it is an invasive species in Europe and North America. Little is known about its population structure and historical demography in its native range, especially along the Pacific coast of China. We collected mitochondrial cytochrome oxidase subunit II and cytochrome  b sequences from 154 individuals distributed in the rivers along the Chinese coast and 15 individuals from Japan. Phylogenetic analysis resulted in three major monophyletic groups: northern China, southern China and Japan. Negligible migration was detected among those groups by coalescent analysis. Hence, we support the recognition of three species: Eriocheir hepuensis in southern China, Eriocheir sinensis in northern China and Eriocheir japonica in Japan. The populations in the middle (the Oujiang and Minjiang Rivers) possess a mixture of haplotypes similar to either the northern or the southern haplotypes. We believe that secondary intergradation as the most likely cause of the clinal variation based on examining the genetic variation in the latitudinal space. The estimated divergence time between E. sinensis and E. hepuensis is 2.24 million years ago (Ma), while the divergence time between E. japonica and E. sinensis is 1.83 Ma. Both are in the late Pliocene, suggesting that land bridges associated with low sea level during that time might have severed as vicariant barriers for speciation. The divergence of the northern population and the 'northern haplotypes' in the middle population was estimated at 0.12 Ma, while the time separating the southern population and the 'southern haplotypes' in the middle populations was estimated as 0.16 Ma, implicating possible secondary contact in the late Pleistocene.  相似文献   

17.
The prehistoric peopling of East Asia by modern humans remains controversial with respect to early population migrations. Here, we present a systematic sampling and genetic screening of an East Asian-specific Y-chromosome haplogroup (O3-M122) in 2,332 individuals from diverse East Asian populations. Our results indicate that the O3-M122 lineage is dominant in East Asian populations, with an average frequency of 44.3%. The microsatellite data show that the O3-M122 haplotypes in southern East Asia are more diverse than those in northern East Asia, suggesting a southern origin of the O3-M122 mutation. It was estimated that the early northward migration of the O3-M122 lineages in East Asia occurred approximately 25,000-30,000 years ago, consistent with the fossil records of modern humans in East Asia.  相似文献   

18.
An unequal contribution of male and female lineages from parental populations to admixed ones is not uncommon in the American continents, as a consequence of directional gene flow from European men into African and Hispanic Americans in the past several centuries. However, little is known about sex-biased admixture in East Asia, where substantial migrations are recorded. Tibeto-Burman (TB) populations were historically derived from ancient tribes of northwestern China and subsequently moved to the south, where they admixed with the southern natives during the past 2600 years. They are currently extensively distributed in China and Southeast Asia. In this study, we analyze the variations of 965 Y chromosomes and 754 mtDNAs in >20 TB populations from China. By examining the haplotype group distributions of Y-chromosome and mtDNA markers and their principal components, we show that the genetic structure of the extant southern Tibeto-Burman (STB) populations were primarily formed by two parental groups: northern immigrants and native southerners. Furthermore, the admixture has a bias between male and female lineages, with a stronger influence of northern immigrants on the male lineages (approximately 62%) and with the southern natives contributing more extensively to the female lineages (approximately 56%) in the extant STBs. This is the first genetic evidence revealing sex-biased admixture in STB populations, which has genetic, historical, and anthropological implications.  相似文献   

19.
Since the discovery of Gm ab3st haplotype which characterizes Mongoloid populations in 1966, the distribution of the genetic markers of immunoglobulins (Gm) among the Mongoloid populations scattered from Southeast Asia through East Asia to South America has been investigated and concluded as follows: 1) Mongoloid populations characterized by the four Gm haplotypes, ag, axg, ab3st and afb 1b3 are divided into two groups on the basis of analysis of genetic distances based on the Gm haplotype frequencies: one is a southern group characterized by a remarkably high frequency of Gm afb 1b3 and a low frequency of Gm ag and the other is a northern group characterized by a high frequency of Gm a and an extremely low frequency of Gm afb 1b3. 2) Populations in China, mainly Han including minority nationalities, show remarkable heterogeneities from north to south, in sharp contrast to Korean and Japanese populations showing homogeneities, respectively. The center of dispersion of the Gm afb 1b3 characterizing southern Mongoloids must exist in Guangxi and Yunnan area in the southwest China. 3) The Gm ab3st gene found in the highest incidence among the north Baikal Buriats flows in all directions. The gene, however, shows precipitous drop which occur from mainland China to Southeast Asia and from North to South-America, although the Gm ab3st gene is still found in high incidences among Eskimos, Yakuts, Tibetans, Olunchuns, Koreans, Japanese and Ainus. On the other hand, the gene is introduced into Huis, Uighurs, Indians, Iranians and far Hungarians.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
本文研究与整理海峡两岸汉民族与南岛民族的肤纹数据,来比较与探讨目前他们的肤纹形态上的异同。研究群体包含台湾的汉人与原住民族群,以及大陆的汉族与海南的回辉人。研究结果显示两岸非官话(亦作北方方言)区汉族虽然在肤纹参数上有些许不同,但皆属于北方群。而南岛民族的回辉人和台湾原住民则分属南方和北方群,并且在肤纹参数上有非常显著的不同。这是第一个两岸南岛民族的肤纹比较研究,也是第一个非官话区汉人群体的肤纹比较研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号