首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Summary Apart from cholinergic nerve fibers, which make up the main part of efferent fibers to the avian adrenal gland (Unsicker, 1973b), adrenergic, purinergic and afferent nerve fibers occur. Adrenergic nerve fibers are much more rare than cholinergic fibers. With the Falck-Hillarp fluorescence method they can be demonstrated in the capsule of the gland, in the pericapsular tissue and near blood vessels. By their green fluorescent varicosities they may be distinguished characteristically from undulating yellow fluorescent ramifications of small nerve cells which are found in the ganglia of the adrenal gland and below the capsule. The varicosities of adrenergic axons exhibit small (450 to 700 Å in diameter) and large (900 to 1300 Å in diameter) granular vesicles with a dense core which is usually situated excentrically. After the application of 6-hydroxydopamine degenerative changes appear in the varicosities. Adrenergic axons are not confined to blood vessels but can be found as well in close proximity of chromaffin cells. Probably adrenergic fibers are the axons of large ganglion cells which are situated mainly within the ganglia of the adrenal gland and in the periphery of the organ and whose dendritic endings show small granular vesicles after treatment with 6-OHDA.A third type of nerve fiber is characterized by varicosities containing dense-cored vesicles with a thin light halo, the mean diameter (1250 Å) of which exceeds that of the morphologically similar granular vesicles in cholinergic synapses. Those fibers resemble neurosecretory and purinergic axons and are therefore called p-type fibers. They cannot be stained with chromalum-hematoxyline-phloxine. Axon dilations showing aggregates of mitochondria, myelin bodies and dense-cored vesicles of different shape and diameter are considered to be afferent nerve endings. Blood vessels in the capsule of the gland are innervated by both cholinergic and adrenergic fibers.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).  相似文献   

2.
Summary Recent physiological studies have indicated an autonomic influence on the secretion of testosterone from Leydig cells in humans and laboratory animals. Furthermore, a few studies have shown enhanced autonomic control of Leydig cell function in immature, relative to mature, laboratory animals. In the current ultrastructural study of the human testicular interstitium the morphology of autonomic components is described from neonatal, childhood and pubertal ages. Autonomic nerve fibers and varicosities with neurotransmitter vesicles are described in proximity to Leydig cells. The observed autonomic terminals are classified by vesicle morphology into three general types: (1) Type I with predominately small agranular vesicles (30–60 nm) and occasional larger granular vesicles (100 nm). This type is morphologically consistent with being cholinergic. (2) Type II with predominately small granular vesicles (30–60 nm), as well as sporadic large granular vesicles. These are morphologically consistent with adrenergic terminals. (3) Type III which exhibit numerous large granular vesicles of mixed size. Evidence of autonomic terminals is encountered most frequently in childhood biopsies, age 3 to 10 years. The neonatal specimen (4 months) is noteworthy in that many of the Schwann cells appear immature and no adrenergic terminals are observed. In contrast, terminals morphologically consistent with being adrenergic are common in the childhood series of biopsies. Although the vast majority of the autonomic terminals are associated with Leydig cells indirectly as boutons en passant, separated by approximately 150 nm to more than a m, evidence of direct contact (20 nm) of autonomic terminals with Leydig cells is presented. These findings provide morphological evidence of frequent indirect and rare direct contact of autonomic nerve terminals with Leydig cells in man.  相似文献   

3.
Summary The adrenergic and cholinergic innervation to the rat iris has been studied at a light and electron microscopic level. Catecholamine fluorescence histochemistry showed adrenergic nerves to be present in both the dilatator and the constrictor pupillae regions. At a fine structural level the terminal innervation of the iris was studied and criteria for the differentiation between presumptive adrenergic and presumptive cholinergic axon terminals were examined. To aid this examination presumptive adrenergic axons were either labelled with the false adrenergic transmitter, 5-hydroxydopamine, or chemical sympathectomy performed using 6-hydroxydopamine. The value of using acetylcholinesterase staining as a marker for cholinergic nerve terminals was also studied.Results showed a mixed adrenergic/cholinergic innervation to the dilatator pupillae. In the constrictor pupillae an exclusively cholinergic innervation was found although adrenergic and cholinergic nerves were found supplying the blood vessels and at the dilatator-constrictor interface. These findings are discussed with regard to innervation-function relationships in the iris.  相似文献   

4.
Summary The ferret is widely used in functional and neuromorphological studies on the respiratory tract. We have examined the occurrence and distribution of peptide-containing and adrenergic nerve fibers (using dopamine--hydroxylase as a marker). Adrenergic nerve fibers and fibers storing vasoactive intestinal peptide have a widespread distribution along the entire respiratory tract. Adrenergic nerve fibers were found in the lamina propria, as well as around blood vessels and glands and in smooth muscle. Nerve fibers storing vasoactive intestinal peptide occurred in the epithelium, the lamina propria, around blood vessels and glands, and among muscle bundles. Substance P-, neurokinin A- and calcitonin gene-related peptide-containing nerve fibers predominated beneath and within the epithelium along the entire respiratory tract. Neuropeptide Y-containing nerve fibers were prominent among smooth muscle bundles and around glands. The blood vessels in the wall of the airways were richly supplied with peptidecontaining nerve fibers and adrenergic fibers. Ganglia located over the outer or dorsal surface of the tracheal wall harbored vasoactive intestinal peptide-containing nerve cell bodies. Substance P and neurokinin A invariably coexisted in the same nerve fibers. Further, coexistence of substance P/neurokinin A and calcitonin gene-related peptide was observed in the nerve fibers associated with the epithelium. Vasoactive intestinal peptide, neuropeptide Y and occasionally also substance P coexisted in the population of nerve fibers associated with blood vessels and smooth muscle. Many adrenergic nerve fibers contained neuropeptide Y.  相似文献   

5.
Summary The relative density of adrenergic and non-adrenergic nerves in the hepatic portal vein of the rabbit has been determined ultrastructurally. Adrenergic nerves were visualised with the modified chromaffin procedure of Tranzer and Richards (1976). Nearly equal numbers of adrenergic and non-adrenergic nerve profiles were found, indicating a much greater density of innervation by non-adrenergic nerves than that described by Burnstock et al. (1979) using light microscopic histochemical methods. These results imply that part of the argument used by Burnstock et al. (1979) to support purinergic transmission in rabbit portal vein is probably invalid.  相似文献   

6.
Summary The fine structure, origin, and distribution density of the autonomic nerve endings in the tarsal muscle of the mouse were studied by histochemistry and electron microscopy. With histochemical methods, the fine nerve plexus in the normal muscle shows both catecholamine-positive varicose fibers and acetylcholinesterase-active varicose fibers. The former are distributed more densely than the latter. After superior cervical ganglionectomy, the catecholamine-positive fibers disappear, while after pterygopalatine ganglionectomy, the acetylcholinesterase-active fibers vanish. In electron micrographs, the varicosities appear as expansions containing many synaptic vesicles. The axonal expansions partly lack a Schwann sheath and directly face the pinocytotic vesicle-rich zones of the smooth muscle cells. A relatively wide space, 0.1 to 1.0 m in width, lies between nerve expansion and muscle cell. The expansions can be classified into two types: Type I having small granular synaptic vesicles, and Type II having agranular vesicles instead of small granular synaptic vesicles. Type I undergoes degeneration after superior cervical ganglionectomy, while Type II degenerates after pterygopalatine ganglionectomy. This indicates that Type I corresponds to the synaptic ending of the adrenergic fiber originating from the superior cervical ganglion, and Type II to the synaptic ending of the cholinergic nerve fiber derived from the pterygopalatine ganglion. Type I is more frequent (88/104 m2 area of muscle) than Type II (17/104 m2).  相似文献   

7.
Summary The distribution of adrenergic and peptidergic (Gomori-positive) structures of the hypophysial neuro-intermediate complex in Acipenseridae has been studied by means of light, fluorescence, and electron microscopy. Adrenergic fibres (B-fibres) and their terminals have been detected in the neurohypophysis of these fishes. The terminal swellings of B-fibres as well as the terminals of the neurosecretory peptidergic fibres (A1 and A2) make contact with the basement membrane of the connective tissue layer separating the neurohypophysis from the intermediate lobe. Capillaries are situated within this layer and, therefore, the main part of the fibre terminals is in contact with the pericapillary space. The release of catecholamines from the adrenergic terminals into the capillaries connected with the general circulation is supposed. The diffusion of catecholamines through the connective tissue layer into the parenchyma of the intermediate lobe is also suggested. Hence, the glandular activity of the intermediate lobe seems to be under the dual control of adrenergic and peptidergic elements of the hypothalamus.The authors wish to express their deep appreciation to G. M. Persov, Dr. Sc. Biol., Head of the Laboratory of Experimental Ichthyology, Petershof Biological Institute of the University of Leningrad, for the material supplied for fluorescence microscopy, and to Mr. G. V. Sabinin for photographic services.  相似文献   

8.
Summary In the crested newt, the ultrastructural organization of the pars nervosa is analogous to that already known in non-mammal tetrapods. An orderly array of ependymal cells makes up the inner limiting layer while less abundant pituicytes are irregularly distributed within this organ. Light and dark pituicytes can be distinguished on the basis of the relative density of the cytoplasmic matrix and the distribution of the cell organelles.Both the ependymal cells and pituicytes are rich in dense bodies and possess extensive processes which ramify among the nerve fibers, often reaching the pericapillary space which they can line for long distances.The main components of the pars nervosa are nerve fibers and nerve terminals (type A), containing electron dense granules 1200–2000 Å in diameter together with clear vesicles averaging 250–400 Å. These fibers are likely to correspond to the aldehyde fuchsin positive neurosecretory fibers revealed by light microscopy. Differences in the granule size within the fibers and terminals lead to further recognition of two subgroups (A1 and A2).Other fibers and terminals (type B) containing clear vesicles and granular vesicles 600 to 1000 Å in diameter, possibly of aminergic type, are also encountered. These fibers are rare and can be seen only in the portion of the pars nervosa near the pars intermedia of the adenohypophysis.Lastly, fibers and terminals containing only clear vesicles ranging from 250 to 400 Å (type C) are occasionally found.Nerve endings are often formed by type A fibers on the perivascular space and on the perivascular processes of the ependymal cells and pituicytes. In agreement with recent findings available in the literature, the occurrence of synaptoid contacts between these terminals and both pituicytes and ependymal cells may confirm the active role of these cells in transport and release of neurosecretion.Work supported by a grant from the Consiglio Nazionale delle Ricerche.We are gratefully indebted to Dr. G. Gendusa and P. Balbi for technical assistance, dr. G. E. Andreoletti for statistical analysis.  相似文献   

9.
Summary The distribution of cholinergic neurons in the urinary tract and male genital organs of the cat was studied by a histochemical method for acetylcholinesterase. In addition to cell clusters in autonomic ganglia (intraganglionic cells), isolated extraganglionic cholinergic cells were found within the innervated tissues, usually in association with nerve trunks and blood vessels. Smaller neural cells with multiple axonal processes, identical to Cajal's interstitial cells, were found in the meshes of the terminal nerve plexus in smooth muscle, lamina propria and vascular wall.It is concluded that peripheral cholinergic neurons, like their adrenergic analogues, are arranged as a short intraganglionic, a shorter extraganglionic, and a terminal system of neurons.Supported in part by grants 10465 and 11285 from the USPHS and the Henry C. Buswell Urology Research Fund.  相似文献   

10.
Summary The innervation of the dog's parotid has been studied by cholinesterase staining and catecholamine fluorescence. In normal glands cholinergic and adrenergic nerves are plentiful around acini, muscular blood vessels, and to a lesser extent striated ducts. The main ducts, although surrounded by many cholinesterase-positive nerves, are associated with few adrenergic nerves. Severance of the classical parasympathetic post-ganglionic nerve to the gland, the auriculo-temporal, caused a moderate loss of cholinesterase-positive nerves. When this procedure was combined with section of the nerves on the internal maxillary artery there was a greater loss. Fewest cholinesterase-positive nerves remained when, in addition to these two procedures, the facial nerve was cut. These findings support the concept that all three sets of nerves contain some post-ganglionic parasympathetic fibres for the dog's parotid. The source of the remaining nerves is unknown. Preganglionic parasympathetic denervation by section of the tympanic branch of the glossopharyngeal nerve did not reduce the number of cholinesterase-positive nerves. None of these parasympathetic denervations caused reduction of adrenergic nerves, indicating that they do not travel to the gland with the parasympathetic nerves. After superior cervical ganglionectomy a few scattered fluorescent nerves remained in the gland; their origin is unknown.  相似文献   

11.
Summary The autonomic nervous control of the cod iris has been studied. The pharmacological properties of the smooth muscles of the iris have been elucidated by agonist/antagonist studies on isolated strip preparations. Electrical stimulation of parasympathetic and sympathetic pathways to the eye have been carried out, with recordings of the movements of the iris margin. Additions of cholinergic and adrenergic antagonists in selective concentrations were made to investigate the nature of the autonomic nerve fibres controlling the iris.Isolated strip preparations of the iris sphincter contracted in response to cholinergic or-adrenoceptor agonists. There appear to be no radial muscular elements in the cod iris. The effect of carbachol on the iris sphincter could be competitively antagonized by atropine, suggesting the presence of muscarinic receptors of the smooth muscles. The effect of adrenaline was similarly antagonized by phentolamine. The effect of phentolamine, and the order of potency for the adrenergic agonists, shows the presence of-adrenoceptors in the iris sphincter.-adrenoceptors of minor importance are also suggested by the inhibitory effects of isoprenaline on preparations pre-contracted by carbachol.The indirectly acting adrenergic agonist tyramine also contracts the isolated sphincter preparations. This effect is probably due to release of nervously stored catecholamines, since tyramine lacks effect on preparations from animals pre-treated with 6-hydroxydopamine. Preparations from 6-hydroxydopamine pre-treated animals also show a 10-fold increase in the affinity for adrenaline, demonstrating the development of a pre-synaptic supersensitivity due to the destruction of adrenergic nerve terminals of the iris. Stimulation of the sympathetic chain or ciliary nerves produces a constriction of the pupil of the same side. Application of selective concentrations of the antagonists atropine and phentolamine shows that the sympathetic constrictory innervation is solely adrenergic. In some preparations a small pupillo-dilatory effect of nerve stimulation is evident after the constrictory effect has been abolished by phentolamine. This inhibitory effect can be abolished by propranolol, indicating the presence of a-adrenoceptor mediated inhibitory control of minor importance. Stimulation of the oculomotor nerve produces no consistent responses of the cod iris.Illumination of one eye produces a pupilloconstriction comparable to that seen after sympathetic nerve stimulation. The light induced response is insensitive to atropine, phentolamine and tetrodotoxin, showing a direct effect on the smooth muscles of the sphincter. There is no consensual reflex in the cod.I wish to thank Dr. Susanne Holmgren for critically examining the original draft of this paper, and Mrs. Lena Utter for skilled assistance with isolated strip preparations and processing of concentration-response data. The fish was kindly supplied by Mr. Ingmar Hakemar. This work has been supported by grants from the Swedish Natural Science Research Council, the M. Bergvall Foundation and the Adlerbert Foundation.  相似文献   

12.
In canine myocardium, the -subunit of the L-type Ca2+ channel is phosphorylated by cAMP dependent protein kinase in vitro as well as in vivo (Haase et al. FEBS Lett 335: 217–222, 1993). We have assessed the identity of the -subunit as well as its in vivo phosphorylation in representative experimental groups of catecholamine-challenged canine hearts. Adrenergic stimulation by high doses of both noradrenaline and isoprenaline induced rapid (within 20 sec) and nearly complete phosphorylation of the Ca2+ channel -subunit. Phosphorylation in vivo was about 4-fold higher as compared to untreated controls. When related to catecholamine-depleted (reserpine-treated) hearts noradrenaline and isoprenaline increased the in vivo phosphorylation of the -subunit even 8-fold. This phosphorylation correlated positively with tissue levels of cAMP, endogenous particulated cAMP-dependent protein kinase (PKA) and the rate of contractile force development dP/dtmax. The results imply the involvement of a PKA-mediated phosphorylation of the Ca2+ channel -subunit in the adrenergic stimulation of intact canine myocardium.  相似文献   

13.
Summary Knowing the ontogenesis of the central monoamine neurons of the rat it is possible to obtain, by free-hand dissection from embryos and newly born animals, pieces containing dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT) neurons that are small enough to permit homologous transplantation to the anterior chamber of the eye of adult animals. With this technique it was established that all three types of immature monoamine neurons are able to survive in the anterior chamber. Fluorescence histochemical analysis of whole mount preparations of the sympathetically denervated host irides revealed that both the catecholamine- and the 5-HT-neurons are able to partly reinnervate the irides, forming networks of varicose nerve terminals similar to the normally present sympathetic adrenergic ground plexus.Monoamine nerve cell bodies are attached to the irides but the majority of fluorescent nerve cell bodies is located within the transplants. Serial sectioning of these transplants showed rather well organized brain tissue, containing groups of fluorescent and non-fluorescent cell bodies, many areas being innervated by monoamine nerve terminals. When brain tissue was transplanted before the normal appearance of fluorescent neuroblasts (embryos with a crown-rump length less than 8 mm) monoamine neurons developed and matured within the eye.The amount of newly formed nerves of central origin recovered on the irides increased with time between the 2nd and 4th postoperative week and persisted after 2 months. The yield of new fibers was better using transplants from embryos with a crown-rump length between 15 and 30 mm than using transplants from larger embryos and newly born animals.If embryonic brain tissue known to be devoid of monoamine nerve cell bodies but containing monoamine nerve terminals in the adult state (cortex cerebri and cerebelli, spinal cord) was transplanted to sympathetically non-denervated eyes, the sympathetic adrenergic fibers seemed to be able to innervate the transplants.This work was supported by grants from the Swedish Medical Research Council (14×–3185), Karolinska Institutets fonder, and Magnus Bergvalls Stiftelse. We thank Miss Monica Eliasson, Mrs. Ulla Flyger, Mrs. Barbro Norstedt and Miss Ingrid Strömberg for skilful technical assistance. The generous gifts of Nialamide, Pfizer, and Pargyline, Abbott are gratefully acknowledged.  相似文献   

14.
Summary The present study investigates the innervation of the embryonic chick ovary with regard to (i) development and compartmentalization of catecholaminergic nerves, and (ii) presence of adrenoceptors on steroidogenic target cells of catecholaminergic nerve terminals. Catecholaminergic nerve fibers visualized by glyoxylic acid-induced histofluorescence first appeared at embryonic day (E) 13. From E15 through E21 the density of fluorescent aminergic nerves increased markedly in parallel with the concentration of catecholamines and numbers of nerve bundles and single axons seen at the electron-microscopic level. Catecholaminergic nerves were confined to the ovarian medulla and closely associated with interstitial cells. Nerve terminals approached interstitial cells up to a distance of 20 nm and, in their majority, exhibited uptake of the false adrenergic transmitter 5-hydroxydopamine. Although adrenaline amounted to 14% of the total catecholamine content at E21, adrenaline immunoreactivity was only detected in adrenal chromaffin cells, but not in nerve fibers or cell bodies within the ovary. Interstitial cells structurally matured between E15 and E21 as documented by an increase of smooth endoplasmic reticulum and tubular mitochondria. Monoclonal antibodies mAB 120 and BRK 2 raised against avian 1 and mammalian 2-adrenergic receptors revealed the presence of 2-adrenoceptor-like immunoreactivity on the surface of interstitial cells, but not on any other cell type.The results are consistent with the notion of a dense adrenergic innervation of the embryonic chick ovarian medulla and its steroidogenic interstitial cells, and suggest the chick ovary as an excellent model for elucidating the functional role of a neural input to steroidogenic cells during development.  相似文献   

15.
To study whether the changes in cortical noradrenergic and serotonergic mechanisms observed in patients with Alzheimer's disease are the consequence of reduced cortical cholinergic activity, a novel cholinergic immunotoxin (conjugate of the monoclonal antibody 192IgG against the low-affinity nerve growth factor receptor with the cytotoxic protein saporin, 192IgG-saporin) was used to produce a specific and selective loss of cholinergic cells in rat basal forebrain nuclei. To correlate the responses to cholinergic immunolesion in cholinoceptive cortical target regions with cholinergic hypoactivity, quantitative receptor autoradiography to measure adrenoceptors and 5-hydroxytryptamine (5-HT) receptor subtypes, and histochemistry to estimate acetylcholinesterase activity, were performed in adjacent brain sections. 1-adrenoceptor and 5-HT1A receptor binding were not affected by cholinergic immunolesion in any of the cortical and hippocampal regions studied. However, cholinergic immunolesion resulted in significantly reduced 2-and -adrenoceptor as well as 5-HT2A receptor binding in a number cortical and hippocampal regions displaying a reduced activity of acetylcholinesterase, already detectable seven days after a single injection of 192IgG-saporin and persisting up to three months post lesion without any significant recovery. The data suggest that at least a subpopulation of 2-and -adrenoceptor as well 5-HT2A receptor subtype is present on cortical and hippocampal cholinergic terminals originating in the basal forebrain. The lesion-induced receptor changes suggest that the alterations in cortical 5-HT2 receptor binding observed in patients with Alzheimer's disease might be secondary to the cholinergic deficits.  相似文献   

16.
Summary The intrapancreatic localization and the effects on basal and stimulated insulin secretion of neuropeptide Y (NPY) were investigated in the mouse. Immunocyto-chemistry showed NPY to be confined to intrapancreatic nerve fibers mainly associated with blood vessels. Fine varicose NPY fibers were also detected in the exocrine parenchyma and occasionally also within the islets. Double-staining experiments with the use of antisera for both NPY and tyrosine hydroxylase (TH) indicated that most of the NPY fibers were nonadrenergic in nature. Only a population of the NPY fibers occurring around blood vessels showed TH immunoreactivity. Under in vivo conditions, NPY was found to elevate plasma insulin levels slightly when injected intravenously at the high dose level of 8.5 nmol/kg. At lower dose levels, NPY did not affect basal plasma insulin levels, but instead inhibited glucose-induced insulin secretion. Thus, the glucose-induced increment in plasma insulin levels, which was 120±7U/ml in controls, was reduced to 87 ±5 U/ml by NPY at 4.25 nmol/kg (p<0.01) and to 98±6U/ml by NPY at 1.06 nmol/kg (p<0.05). In contrast, the insulin secretory response to the cholinergic agonist carbachol was not affected by NPY. We conclude that NPY nerve fibers occur in the mouse pancreas and that most of these NPY nerve fibers are nonadrenergic. Furthermore, in the mouse, NPY enhances basal plasma insulin levels at high dose levels and inhibits glucose-induced, but not cholinergically induced insulin secretion at lower dose levels under in vivo conditions.  相似文献   

17.
The distribution of -aminobutyric acid (GABA) in the human cerebellar cortex was studied using immunohistochemistry for glutamic acid decarboxylase (GAD), the enzyme that catalyses GABA synthesis. Observations by light microscopy revealed, in all layers of the cerebellar cortex, strong, punctate positivity for GAD, related to putative GABAergic nerve terminals, as well as a diffuse cytoplasmic immunoreactivity within neuronal cell bodies. GAD-positive nerve terminals were found in close relationship with the walls of the cerebellar cortex microvessels. Observations by electron microscopy revealed positive nerve terminals in contact with the astrocyte perivascular sheath of capillaries. GAD immunoreactivity was also detected within astroglial perivascular endfeet and endothelial cells. The findings provide further insights into the GABAergic synapses of the circuitry of the human cerebellar cortex. The detection of vascular GAD immunoreactivities suggests that GABAergic mechanisms may regulate cerebellar microvessel function.  相似文献   

18.
Summary Several lipid-mobilizing peptides occur in the pituitary, among them -lipotropin and lipolytic peptide A and peptide B. The latter two peptides are distinct from -lipotropin and appear to be chemically related to the neurophysins. Immunohistochemistry has now revealed that the lipolytic peptide B of the pituitary is localized in the ACTH- and MSH-cells. In addition, immunoreactive peptide B was found in axons of the posterior lobe of the pituitary. Immunoreactive peptide B was found also in nerve fibers and nerve cell bodies in the hypothalamus, particularly in the hypothalamo-hypophyseal tract and in the magnocellular neuronal system. Immunoreactive nerve fibers were numerous also in the periventricular nucleus of the thalamus. The antiserum against peptide B cross-reacts with neurophysin I, and hence, it cannot be excluded that at least part of the immunostaining in the brain reflects the presence of the latter component. However, the regional distribution of immunoreactive peptide B and neurophysin was not identical. Therefore, it is possible that authentic peptide B occurs not only in the pituitary but also in the brain.  相似文献   

19.
Summary Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were employed to study the innervation and vascular supply of crayfish skeletal muscle.Blood vessels and nerve terminals identified by TEM were often closely associated. Synaptic regions of the nerve terminals were always located under sarcolemma and contained both dense-cored and agranular synaptic vesicles. Axo-axonal synapses of several different types were observed. Blood vessels consisted of several vessel cells or supporting cells enclosing a lumen, which was connected to the exterior by fine channels between the supporting cells.SEM of whole freeze-dried muscles revealed two types of ramifying structure, which often ran in parallel over the muscle surface. One, identified as nerve, was more cylindrical and had a smoother surface than the other, which was identified as blood vessel. Fine nerve branches disappeared under the sarcolemma, probably near synaptic regions, but synapses could not be seen. Blood vessels also had fine terminations which merged into the sarcolemma.Supported by grants from the National Research Council of Canada and The Muscular Dystrophy Association of Canada. The technical assistance of Mr. M. Uy is acknowledged. Dr. F. Lang held a Postdoctoral Fellowship from the Muscular Dystrophy Association of Canada. Acknowledgement is made for the use of the scanning electron microscope in the Royal Ontario Museum, established through a grant from N.R.C. to the Department of Zoology, University of Toronto for the development of a program in systematic and evolutionary Zoology.  相似文献   

20.
Summary In the cerebral (= supraesophageal, suprapharyngeal) ganglion of the earthworm, a number of neurosecretory Gomori-positive perikarya are bipolar; others are unipolar, or multipolar. Some of the neurosecretory cell processes project centrally into a fibrous zone; peripheral processes enter small nerves which leave the dorsocaudal aspect of the ganglion.In the central fibrous zone, the neurosecretory fibers form varicose Gomoripositive terminals. Here, also zinc-iodine-osmium (ZIO)-positive fibers and monoamine fluorescent fibers are found. With the electron microscope, nerve terminals containing synaptic vesicles and either large neurosecretory peptidergic granular vesicles (diameter more than 1500 Å), or smaller granular vesicles (diameter about 1300 Å, or 900 Å) are observed. These axon endings mainly form axo-dendritic synapses. Peptidergic profiles are both pre- and postsynaptic. Some of the extraganglionic peptidergic fibers appear to terminate around vessels, but most of them form terminals on the visceral muscle cells which surround the ganglion.We think that the central neurosecretory processes communicate with the fibers of the synaptic zone of the ganglion. The peripheral neurosecretory peptidergic fibers are supposed to form a primitive neurohemal area and/or to function as vasomotor nerves. The fibers innervating the visceral muscle cells may represent vegetative nerves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号