首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Aims

A better understanding of how plant growth, N nutrition and symbiotic nitrogen fixation (SNF) are influenced by soil inorganic N availability, for a wide range of legume species, is crucial to optimise legume productivity, N2 fixation, while limiting environmental risks such as N leaching.

Methods

A comparative analysis was performed for ten legume crops, grown in a field experiment and supplied with four N fertiliser rates. Dry matter, N concentration and SNF were measured. In parallel, root elongation rates were studied in a greenhouse experiment.

Results

For most species, N fertilisation had little effect on plant growth and N accumulation. SNF was reduced by soil inorganic N available at sowing but with large differences in the magnitude of the response among species. The response varied according to plant N requirements for growth and plant ability to retrieve inorganic N. Accordingly, root lateral expansion rate measured in RhizoTubes was highly correlated with plant ability to retrieve inorganic N measured in the field experiment.

Conclusion

Combining SNF response to soil inorganic N, shoot N and plant ability to retrieve inorganic N, allowed a robust evaluation of differential response to soil inorganic N among a wide range of legume species.
  相似文献   

2.

Background

Verticillium longisporum is one of the most important pathogens of Brassicaceae that remains strictly in the xylem during most stages of its development. It has been suggested that disease symptoms are associated with clogging of xylem vessels. The aim of our study was to investigate extracellular defence reactions induced by V. longisporum in the xylem sap and leaf apoplast of Brassica napus var. napus in relation to the development of disease symptoms, photosynthesis and nutrient status.

Results

V. longisporum (strain VL43) did not overcome the hypocotyl barrier until 3 weeks after infection although the plants showed massive stunting of the stem and mild leaf chlorosis. During this initial infection phase photosynthetic carbon assimilation, transpiration rate and nutrient elements in leaves were not affected in VL43-infected compared to non-infected plants. Proteome analysis of the leaf apoplast revealed 170 spots after 2-D-protein separation, of which 12 were significantly enhanced in response to VL43-infection. LS-MS/MS analysis and data base searches revealed matches of VL43-responsive proteins to an endochitinase, a peroxidase, a PR-4 protein and a β-1,3-glucanase. In xylem sap three up-regulated proteins were found of which two were identified as PR-4 and β-1,3-glucanase. Xylem sap of infected plants inhibited the growth of V. longisporum.

Conclusion

V. longisporum infection did not result in drought stress or nutrient limitations. Stunting and mild chlorosis were, therefore, not consequences of insufficient water and nutrient supply due to VL43-caused xylem obstruction. A distinct array of extracellular PR-proteins was activated that might have limited Verticillium spreading above the hypocotyl. In silico analysis suggested that ethylene was involved in up-regulating VL43-responsive proteins.
  相似文献   

3.

Background

In this study, we optimized the process for enhancing amylase production from Pseudomonas balearica VITPS19 isolated from agricultural lands in Kolathur, India.

Methods

Process optimization for enhancing amylase production from the isolate was carried out by Response Surface Methodology (RSM) with optimized chemical and physical sources using Design expert v.7.0. A central composite design was used to evaluate the interaction between parameters. Interaction between four factors–maltose (C-source), malt extract (Nsource), pH, and CaCl2 was studied.

Results

The factors pH and CaCl2 concentration were found to affect amylase production. Validation of the experiment showed a nearly twofold increase in alpha amylase production.

Conclusion

Amylase production was thus optimized and increased yield was achieved.
  相似文献   

4.

Background and aims

Nitrogen deposition and altered precipitation regime are likely to change plant growth, biomass allocation and community structure, which may influence susceptibility of ecosystem functions (i.e. ecosystem carbon exchange) to extreme climatic events, such as drought.

Methods

In a meadow steppe, we deployed a drought treatment on a long-term water and nitrogen addition experiment to investigate resource abundance changes induced variation in the sensitivity of ecosystem carbon exchange to extreme drought.

Results

Compared to the control plots, long-term water and nitrogen addition caused a strong increase in biomass, and a reduction in diversity and root/shoot ratio. Net ecosystem CO2 exchange (NEE) in water and nitrogen addition plots were more sensitive to drought stress than the control plots. The enhanced NEE drought sensitivity (SNEE) in nitrogen fertilization habitat is associated with changes in aboveground biomass and root/shoot ratio, rather than variation in species diversity, while SNEE in the unfertilized plots was controlled by root/shoot ratio. Compared to the water and nitrogen addition plots, the control plots had the highest percentage recovery of ecosystem carbon exchange (RNEE) during the rehydration period. RNEE is likely determined by aboveground biomass and level of damage in the photosynthetic organ.

Conclusion

These findings suggest that long-term changes in precipitation regimes and nitrogen deposition may significant alter the susceptibility of key ecosystem processes to drought stress.
  相似文献   

5.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

6.

Aim

Our objectives were to compare effects of root charge properties on Al adsorption by the roots of rice that differed in Al-tolerance, and to examine effects of different nitrogen forms on charge properties of rice roots and Al adsorption.

Methods

Streaming potential and chemical methods were used to measure root zeta potential and investigate Al chemical forms adsorbed on the roots of rice obtained from solution culture experiments.

Results

Rice roots of the Al-sensitive variety Yangdao-6 carried greater negative charge than the Al-tolerant variety Wuyunjing-7, which meant the roots of Yangdao-6 adsorbed more exchangeable and complexed Al. When both rice varieties were grown in NH4 +-containing nutrient solutions, there were less functional groups and lower negative surface charge on their roots, which reduced Al adsorption compared to the rice grown in NO3 ? containing nutrient solutions. The decline in nutrient solution pH due to NH4 + uptake by rice roots was responsible for the reduced numbers of functional groups and the lower negative surface charge on the roots compared to the rice grown in NO3 ? containing solutions.

Conclusions

Integrated root surface charge, as expressed by zeta potential, played an important role in Al adsorption by the roots of rice with different Al-tolerance.
  相似文献   

7.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

8.

Aims

Fungi play a central role in litter decomposition, a key process controlling the terrestrial carbon cycle and nutrient availability for plants and microorganisms. Climate change and elevated CO2 affect soil fungi, but the relative importance of the global change variables for litter decomposition is still uncertain. The main objective was therefore to assess the short-term litter decomposition and associated fungal community in a global change manipulated temperate heath ecosystem.

Methods

The heath had been exposed to 6 years of warming, elevated atmospheric CO2 and an extended pre-summer drought. Litterbags with litter from heather (Calluna vulgaris) and wavy-hair grass (Deschampsia flexuosa) were incubated in the litter layer for 6 months, where after we analyzed the litter-associated fungal community, litter loss, CO2 respiration, and total content of carbon, nitrogen and phosphorus.

Results

Elevated temperature tended to increase litter decomposition rates, whereas elevated CO2 had no effect on the process. The pre-summer drought treatment had a positive impact on litter decomposition, CO2 respiration and fungal abundance in the litterbags, although we observed no major changes in fungal community composition.

Conclusions

The drought treatment during pre-summer had a legacy effect on litter decomposition as decomposition rates were positively affected later in the year. The community structure of litter-decomposing fungi was not affected by the drought treatment. Hence, the legacy effect was not mediated by a change in the fungal community structure.
  相似文献   

9.

Background and aims

Drought events, agricultural practices and plant communities influence microbial and soil abiotic parameters which can feedback to fodder production. This study aimed to determine which soil legacies influence plant biomass production and nutritional quality, and its resistance and recovery to extreme weather events.

Methods

In a greenhouse experiment, soil legacy effects on Lolium perenne were examined, first under optimal conditions, and subsequently during and after drought. We used subalpine grassland soils previously cultivated for two years with grass communities of distinct functional composition, and subjected to combinations of climatic stress and simulated management.

Results

The soil legacy of climatic stress increased biomass production of Lolium perenne and its resistance and recovery to a new drought. This beneficial effect resulted from higher nutrient availability in soils previously exposed to climatic stresses due to lower competitive abilities and resistance of microbial communities to a new drought. This negative effect on microbial communities was strongest in soils from previously cut and fertilized grasslands or dominated by conservative grasses.

Conclusion

In subalpine grasslands more frequent climatic stresses could benefit fodder production in the short term, but threaten ecosystem functioning and the maintenance of traditional agricultural practices in the long term.
  相似文献   

10.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   

11.

Background and aims

To test the hypothesis that dominant plant species could acquire different nitrogen (N) forms over a spatial scale and they also have the ability to compete for available N with microbes.

Methods

A short-term 15N labeling experiment was conducted in the temperate grassland ecosystem of North China in July of 2013. Three N forms (NO3 ? , NH4 + and glycine) labeled with 15N were injected into the two soil depths (0–5 and 5–15 cm) surrounding each plant to explore N acquisition by plants and microbes. Three dominant plant species (Artemisia frigida, Cleistogenes squarrosa and Artemisia capillaris) were investigated.

Results

Two hours after 15N labeling, all three dominant plant species absorbed both organic and inorganic N, but different patterns were observed at two soil depths. Uptake of NO3 ? was significantly higher at 0–5 cm than at 5–15 cm soil depth among all the dominant plant species. 15N recovery by microbes was significantly higher than plants. However, 15N recovery by plants showed different patterns over soil depths.

Conclusions

Dominant plant species in the temperate grassland have different patterns in acquisition of N added to soil in organic form and absorption of inorganic N, and microbes were more effectively than plants at competing for N in a short-term period.
  相似文献   

12.

Objective

To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO3 supplementation condition.

Results

From the medium containing 50 g sugars l?1 and 0.5 g formic acid l?1, only 0.75 g ABE l?1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l?1 was produced when pH was adjusted by 4 g CaCO3 l?1. The beneficial effect can be ascribed to the buffering capacity of CaCO3. Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO3. Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred.

Conclusion

The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO3 supplementation due to its buffering capacity.
  相似文献   

13.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

14.

Background

There are few in-flight studies of cognition-related cerebral oxygen status in helicopter pilots.

Methods

Four male helicopter pilots volunteered for nine sorties during visual flight in a BK117 and UH-60J. The pilots' pre-frontal oxy-hemoglobin (O2Hb) and deoxy-hemoglobin (HHb) concentration were continuously monitored from the right/left sections of the forehead using near-infrared spectrophotometers with a consideration of motion artifacts.

Results

The concentration of O2Hb progressively increased (13.98 μmol?L-1 as a maximum increased concentration) in both the right/left sections of the forehead from the basal level during the heightened cognitive demand of helicopter flight. There was comparatively little change (4.32 μmol?L-1 as a maximum increased concentration) in HHb concentration during measurement of helicopter flight. HHb changes were apparently not affected by a heightened cognitive demand of helicopter pilots.

Conclusion

These results demonstrate that near-infrared spectroscopy, especially O2Hb measurements, provides a sensitive method for the monitoring of cognitive demand (maneuvers) in helicopter pilots.
  相似文献   

15.

Background

Maize seedlings are constantly exposed to inorganic phosphate (Pi)-limited environments. To understand how maize cope with low Pi (LP) and high Pi (HP) conditions, physiological and global proteomic analysis of QXN233 genotype were performed under the long-term Pi starvation and supplementation.

Methods

We investigated the physiological response of QXN233 genotype to LP and HP conditions and detected the changes in ion fluxes by non-invasive micro-test technology and gene expression by quantitative real-time polymerase chain reaction. QXN233 was further assessed using vermiculite assay, and then proteins were isolated and identified by nano-liquid chromatography-mass spectrometry.

Results

A negative relationship was observed between Na+ and Pi, and Na+ efflux was enhanced under HP condition. Furthermore, a total of 681 and 1374 were identified in the leaves and roots, respectively, which were mostly involved in metabolism, ion transport, and stress response. Importantly, several key Pi transporters were identified for breeding potential. Several ion transporters demonstrated an elaborate interplay between Pi and other ions, together contributing to the growth of QXN233 seedlings.

Conclusion

The results from this study provide insights into the response of maize seedlings to long-term Pi exposure.
  相似文献   

16.

Background and aims

Single superphosphate (SSP) is a major source of phosphorus (P) used in grazing systems to improve pasture production. The aim of this experiment was to determine the fate of fertiliser P in clover pastures under field conditions.

Methods

A procedure was developed to radiolabel SSP granules with a 33P radiotracer, which was then applied to the soil surface (equivalent to ~12 kg P ha?1) of a clover pasture. Recovery of fertiliser P was determined in clover shoots, fertiliser granules and soil fractions (surface layer: 0–4 cm and sub-surface layer: 4–8 cm).

Results

The P diffusion patterns of the 33P-labelled SSP granules were not significantly different to those of commercial SSP granules (P?>?0.05). Recovery of fertiliser P in clover shoots was 30–35 %. A considerable proportion of the fertiliser P (~28 %) was recovered in the surface soil layer and was largely inorganic P.

Conclusions

Recovery of fertiliser P by clover plants was up to 35 % in the year of application. Much of the fertiliser P in soil fractions was inorganic P, which highlights the importance of inorganic P forms and dynamics in soils under clover pasture on a single season timeframe at these sites.
  相似文献   

17.

Aims

The mechanisms underlying magnesium (Mg) uptake by plant roots remain to be fully elucidated. In particular, there is little information about the effects of Mg deficiency on Mg uptake activity. A Mg uptake kinetic study is essential for better understanding the Mg uptake system.

Methods

We performed a Mg uptake tracer experiment in rice plants using 28?Mg.

Results

Mg uptake was mediated by high- and low-affinity transport systems. The K m value of the high-affinity transport system was approximately 70 μM under Mg-deficient conditions. The Mg uptake activity was promoted by Mg deficiency, which in turn fell to the basal level after 5- min of Mg resupply. The induced uptake rate was inhibited by ionophore treatment, suggesting that an energy-dependent uptake system is enhanced by Mg deficiency.

Conclusions

The Mg uptake changes rapidly with Mg conditions in rice, as revealed by a 28?Mg tracer experiment. This technique is expected to be applicable for Mg uptake analyses, particularly in mutants or other lines.
  相似文献   

18.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

19.

Introduction

Gemcitabine is an important component of pancreatic cancer clinical management. Unfortunately, acquired gemcitabine resistance is widespread and there are limitations to predicting and monitoring therapeutic outcomes.

Objective

To investigate the potential of metabolomics to differentiate pancreatic cancer cells that develops resistance or respond to gemcitabine treatment.

Results

We applied 1D 1H and 2D 1H–13C HSQC NMR methods to profile the metabolic signature of pancreatic cancer cells. 13C6-glucose labeling identified 30 key metabolites uniquely altered between wild-type and gemcitabine-resistant cells upon gemcitabine treatment. Gemcitabine resistance was observed to reprogram glucose metabolism and to enhance the pyrimidine synthesis pathway. Myo-inositol, taurine, glycerophosphocholine and creatinine phosphate exhibited a “binary switch” in response to gemcitabine treatment and acquired resistance.

Conclusion

Metabolic differences between naïve and resistant pancreatic cancer cells and, accordingly, their unique responses to gemcitabine treatment were revealed, which may be useful in the clinical setting for monitoring a patient’s therapeutic response.
  相似文献   

20.

Background and aims

Microalgae are ubiquitous in paddy soils. However, their roles in arsenic (As) accumulation and transport in rice plants remains unknown.

Methods

Two green algae and five cyanobacteria were used in pot experiments under continuously flooded conditions to ascertain whether a microalgal inoculation could influence rice growth and rice grain As accumulation in plants grown in As-contaminated soils.

Results

The microalgal inoculation greatly enhanced nutrient uptake and rice growth. The presence of representative microalga Anabaena azotica did not significantly differ the grain inorganic As concentrations but remarkably decreased the rice root and grain DMA concentrations. The translocation of As from roots to grains was also markedly decreased by rice inoculated with A. azotica. This subsequently led to a decrease in the total As concentration in rice grains.

Conclusions

The results of the study indicate that the microalgal inoculation had a strong influence on soil pH, soil As speciation, and soil nutrient bioavailability, which significantly affected the rice growth, nutrient uptake, and As accumulation and translocation in rice plants. The results suggest that algae inoculation can be an effective strategy for improving nutrient uptake and reducing As translocation from roots to grains by rice grown in As-contaminated paddy soils.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号