首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at 20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only 0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.  相似文献   

2.
A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2+ and Cl and concentrations of stable isotope 18O were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of 15N and 18O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in 15N and 18O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems.  相似文献   

3.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

4.
The 13Cα chemical shifts for 16,299 residues from 213 conformations of four proteins (experimentally determined by X-ray crystallography and Nuclear Magnetic Resonance methods) were computed by using a combination of approaches that includes, but is not limited to, the use of density functional theory. Initially, a validation test of this methodology was carried out by a detailed examination of the correlation between computed and observed 13Cα chemical shifts of 10,564 (of the 16,299) residues from 139 conformations of the human protein ubiquitin. The results of this validation test on ubiquitin show agreement with conclusions derived from computation of the chemical shifts at the ab initio Hartree–Fock level. Further, application of this methodology to 5,735 residues from 74 conformations of the three remaining proteins that differ in their number of amino acid residues, sequence and three-dimensional structure, together with a new scoring function, namely the conformationally averaged root-mean-square-deviation, enables us to: (a) offer a criterion for an accurate assessment of the quality of NMR-derived protein conformations; (b) examine whether X-ray or NMR-solved structures are better representations of the observed 13Cα chemical shifts in solution; (c) provide evidence indicating that the proposed methodology is more accurate than automated predictors for validation of protein structures; (d) shed light as to whether the agreement between computed and observed 13Cα chemical shifts is influenced by the identity of an amino acid residue or its location in the sequence; and (e) provide evidence confirming the presence of dynamics for proteins in solution, and hence showing that an ensemble of conformations is a better representation of the structure in solution than any single conformation. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

5.
γS-crystallin is a major structural component of the human eye lens, which maintains its stability over the lifetime of an organism with negligible turnover. The G57W mutant of human γS-crystallin (abbreviated hereafter as γS-G57W) is associated with dominant congenital cataracts. In order to provide a structural basis for the ability of γS-G57W causing cataract, we have cloned, overexpressed, isolated and purified the protein. The 2D [15N–1H]-HSQC spectrum recorded with uniformly 13C/15N-labelled γS-G57W was highly dispersed indicating the protein to adopt an ordered conformation. In this paper, we report almost complete sequence-specific 1H, 13C and 15N resonance assignments of γS-G57W using a suite of heteronuclear 3D NMR experiments.  相似文献   

6.
In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600 m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3 than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3 in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3 leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N ratio.  相似文献   

7.
NMR relaxation of arginine (Arg) 15Nε nuclei is useful for studying side-chain dynamics of proteins. In this work, we studied the impact of two geminal 15N–15N scalar couplings on measurements of transverse relaxation rates (R 2 ) for Arg side-chain 15Nε nuclei. For 12 Arg side chains of the DNA-binding domain of the Antp protein, we measured the geminal 15N–15N couplings ( 2 J NN ) of the 15Nε nuclei and found that the magnitudes of the 2 J NN coupling constants were virtually uniform with an average of 1.2 Hz. Our simulations, assuming ideal 180° rotations for all 15N nuclei, suggested that the two 2 J NN couplings of this magnitude could in principle cause significant modulation in signal intensities during the Carr–Purcell-Meiboom–Gill (CPMG) scheme for Arg 15Nε R 2 measurements. However, our experimental data show that the expected modulation via two 2 J NN couplings vanishes during the 15N CPMG scheme. This quenching of J modulation can be explained by the mechanism described in Dittmer and Bodenhausen (Chemphyschem 7:831–836, 2006). This effect allows for accurate measurements of R 2 relaxation rates for Arg side-chain 15Nε nuclei despite the presence of two 2 J NN couplings. Although the so-called recoupling conditions may cause overestimate of R 2 rates for very mobile Arg side chains, such conditions can readily be avoided through appropriate experimental settings.  相似文献   

8.
The peptide RHDSGY, a fragment of the human β-amyloid Zn-binding site, and its isomers RH(D-Asp)SGY and RH(β-Asp)SGY have been obtained as amides by means of solid-phase synthesis and analyzed by HPLC and various mass spectrometric methods. The problem of low yield of the RHDSGY peptide and its isomers attributed to 9-fluorenylmethoxycarbonyl (Fmoc)-amino acids and/or formation of such side-products as RH(β-Asp)SGY (or RHDSGY during synthesis of RH(β-Asp)SGY) and RH(Asp-imide) SGY was solved via selection of individual reagents for removal of Fmoc groups from α-amino groups of the growing peptide chain.  相似文献   

9.
Imino 1H–15N residual dipolar couplings (RDCs) provide additional structural information that complements standard 1H–1H NOEs leading to improvements in both the local and global structure of RNAs. Here, we report measurement of imino 1H–1H RDCs for the Iron Responsive Element (IRE) RNA and native E. coli tRNAVal using a BEST-Jcomp-HMQC2 experiment. 1H–1H RDCs are observed between the imino protons in G–U wobble base pairs and between imino protons on neighboring base pairs in both RNAs. These imino 1H–1H RDCs complement standard 1H–15N RDCs because the 1H–1H vectors generally point along the helical axis, roughly perpendicular to 1H–15N RDCs. The use of longitudinal relaxation enhancement increased the signal-to-noise of the spectra by ~3.5-fold over the standard experiment. The ability to measure imino 1H–1H RDCs offers a new restraint, which can be used in NMR domain orientation and structural studies of RNAs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Based on the difference in the CD14 and CD16 expression, two subsets of monocytes were identified in human and other mammalian blood. These subsets have different patterns of adhesion molecules and chemokine receptors that suggests the different mode of their interaction with endothelium and tissue traffic. Here, we investigated the ability of CD14+CD16+ and CD14++CD16 monocytes to adhere to endothelial cell monolayer in presence or absence of pro- and anti-inflammatory cytokines. We demonstrated that CD14+CD16+ monocytes had a higher level of adhesion to intact monolayer of endothelial cells than CD14++CD16 monocytes. Adhesion of CD14++CD16 and CD14+CD16+ monocytes significantly increased in the presence of TNFα or its combination with other cytokines. IFNγ and IL-4 alone did not affect the adhesion of monocytes. These results show that CD14++CD16 and CD14+CD16+ monocytes can be recruited to the inflamed endothelium, but CD14+CD16+ monocytes adhere to endothelial cells without inflammations twice as strongly as CD14++CD16 monocytes.  相似文献   

11.
12.
Arginine side-chains are often key for enzyme catalysis, protein–ligand and protein–protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ–Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.  相似文献   

13.
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.  相似文献   

14.
While the use of 1H–13C methyl correlated NMR spectroscopy at natural isotopic abundance has been demonstrated as feasible on protein therapeutics as large as monoclonal antibodies, spectral interference from aliphatic excipients remains a significant obstacle to its widespread application. These signals can cause large baseline artifacts, obscure protein resonances, and cause dynamic range suppression of weak peaks in non-uniform sampling applications, thus hampering both traditional peak-based spectral analyses as well as emerging chemometric methods of analysis. Here we detail modifications to the 2D 1H–13C gradient-selected HSQC experiment that make use of selective pulsing techniques for targeted removal of interfering excipient signals in spectra of the NISTmAb prepared in several different formulations. This approach is demonstrated to selectively reduce interfering excipient signals while still yielding 2D spectra with only modest losses in protein signal. Furthermore, it is shown that spectral modeling based on the SMILE algorithm can be used to simulate and subtract any residual excipient signals and their attendant artifacts from the resulting 2D NMR spectra.  相似文献   

15.
We present a highly sensitive pulse sequence, carbonyl carbon label selective 1H–15N HSQC (CCLS-HSQC) for the detection of signals from 1H–15N units involved in 13C′–15N linkages. The CCLS-HSQC pulse sequence utilizes a modified 15N CT evolution period equal to 1/( ) (∼33 ms) to select for 13C′–15N pairs. By collecting CCLS-HSQC and HNCO data for two proteins (8 kDa ubiquitin and 20 kDa HscB) at various temperatures (5–40°C) in order to vary correlation times, we demonstrate the superiority of the CCLS-HSQC pulse sequence for proteins with long correlation times (i.e. higher molecular weight). We then show that the CCLS-HSQC experiment yields assignments in the case of a 41 kDa protein incorporating pairs of 15N- and 13C′-labeled amino acids, where a TROSY 2D-HN(CO) had failed. Although the approach requires that the 1H–15N HSQC cross peaks be observable, it does not require deuteration of the protein. The method is suitable for larger proteins and is less affected by conformational exchange than HNCO experiments, which require a longer period of transverse 15N magnetization. The method also is tolerant to the partial loss of signal from isotopic dilution (scrambling). This approach will be applicable to families of proteins that have been resistant to NMR structural and dynamic analysis, such as large enzymes, and partially folded or unfolded proteins.  相似文献   

16.
New 3D HCN quantitative J (QJ) pulse schemes are presented for the precise and accurate measurement of one-bond 15N1/913C1, 15N1/913C6/8, and 15N1/913C2/4 residual dipolar couplings (RDCs) in weakly aligned nucleic acids. The methods employ 1H–13C multiple quantum (MQ) coherence or TROSY-type pulse sequences for optimal resolution and sensitivity. RDCs are obtained from the intensity ratio of H1–C1–N1/9 (MQ-HCN-QJ) or H6/8–C6/8–N1/9 (TROSY-HCN-QJ) correlations in two interleaved 3D NMR spectra, with dephasing intervals of zero (reference spectrum) and 1/(2JNC) (attenuated spectrum). The different types of 15N–13C couplings can be obtained by using either the 3D MQ-HCN-QJ or TROSY-HCN-QJ pulse scheme, with the appropriate setting of the duration of the constant-time 15N evolution period and the offset of two frequency-selective 13C pulses. The methods are demonstrated for a uniformly 13C, 15N-enriched 24-nucleotide stem-loop RNA sequence, helix-35, aligned in the magnetic field using phage Pf1. For measurements of RDCs systematic errors are found to be negligible, and experiments performed on a 1.5 mM helix-35 sample result in an estimated precision of ca. 0.07 Hz for 1DNC, indicating the utility of the measured RDCs in structure validation and refinement. Indeed, for a complete set of 15N1/913C1, 15N1/913C6/8, and 15N1/913C2/4 dipolar couplings obtained for the stem nucleotides, the measured RDCs are in excellent agreement with those predicted for an NMR structure of helix-35, refined using independently measured observables, including 13C–1H, 13C–13C and 1H–1H dipolar couplings.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-0646-2.  相似文献   

17.
We present a simple method, ARTSY, for extracting 1JNH couplings and 1H–15N RDCs from an interleaved set of two-dimensional 1H–15N TROSY-HSQC spectra, based on the principle of quantitative J correlation. The primary advantage of the ARTSY method over other methods is the ability to measure couplings without scaling peak positions or altering the narrow line widths characteristic of TROSY spectra. Accuracy of the method is demonstrated for the model system GB3. Application to the catalytic core domain of HIV integrase, a 36 kDa homodimer with unfavorable spectral characteristics, demonstrates its practical utility. Precision of the RDC measurement is limited by the signal-to-noise ratio, S/N, achievable in the 2D TROSY-HSQC spectrum, and is approximately given by 30/(S/N) Hz.  相似文献   

18.
Seasonal oscillations in the carbon (δ13C) and nitrogen (δ15N) isotope signatures of aquatic algae can cause seasonal enrichment–depletion cycles in the isotopic composition of planktonic invertebrates (e.g., copepods). Yet, there is growing evidence that seasonal enrichment–depletion cycles also occur in the isotope signatures of larger invertebrate consumers, taxa used to define reference points in isotope-based trophic models (e.g., trophic baselines). To evaluate the general assumption of temporal stability in non-zooplankton aquatic invertebrates, δ13C and δ15N time series data from the literature were analyzed for seasonality and the influence of biotic (feeding group) and abiotic (trophic state, climate regime) factors on isotope temporal patterns. The amplitude of δ13C and δ15N enrichment–depletion cycles was negatively related to body size, although all size-classes of invertebrates displayed a winter-to-summer enrichment in δ13C and depletion in δ15N. Among feeding groups, periphytic grazers were more variable and displayed larger temporal changes in δ13C than detritivores. For nitrogen, temporal variability and magnitude of directional change of δ15N was most strongly related to ecosystem trophic state (eutrophic > mesotrophic, oligotrophic). This study provides evidence of seasonality in the isotopic composition of aquatic invertebrates across very broad geographical and ecological gradients as well as identifying factors that are likely to modulate the strength and variability of seasonality. These results emphasize the need for researchers to recognize the likelihood of temporal changes in non-zooplankton aquatic invertebrate consumers at time scales relevant to seasonal studies and, if present, to account for temporal dynamics in isotope trophic models.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号