首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shim H  Min Y  Hong S  Kwon M  Kim D  Kim H  Choi Y  Lee S  Yang J 《Molecules and cells》2004,18(2):192-199
Pear black necrotic leaf spot (PBNLS) is a disease of pears caused by capillovirus-like particles, which can be observed under the electron microscope. The disease was analyzed by Western blot analysis with antisera raised against apple stem grooving virus (ASGV) coat protein. cDNAs covering the entire genome were synthesized by RT-PCR and RACE using RNA isolated from Chenopodium quinoa infected with sap extracted from pear leaves carrying black necrotic spot disease. The complete genome sequence of the putative pear virus, 6497 nucleotides in length excluding the poly (A) tail, was determined and analyzed. It contains two overlapping open reading frames (ORFs). ORF1, spans from nucleotide position 37 to 6354, producing a putative protein of 241 kDa. ORF2, which is in a different reading frame within ORF1, begins at nucleotide 4788 and terminates at 5750, and produces a putative protein of 36 kDa. The 241 kDa protein contains sequences related to the NTP-binding motifs of helicases and RNA-dependent RNA polymerases. The 36-kDa protein contains the consensus sequence GDSG found in the active sites of several cellular and viral serine proteases. Morphological and serological analysis, and sequence comparison between the putative pear virus, ASGV, citrus tatter leaf virus and cherry virus A of the capillovirus suggest that PBNLS may be caused by a Korean isolate of ASGV.  相似文献   

2.
To localize gene that may encode immunogens potentially important for recombinant vaccine design, we have analysed a region of the equine herpesvirus type-1 (EHV-1) genome where a glycoprotein-encoding gene had previously been mapped. The 4707-bp BamHI-EcoRI fragment from the short unique region of the EHV-1 genome was sequenced. This sequence contains three entire open reading frames (ORFs), and portions of two more. ORF1 codes for 161 amino acids (aa), and represents the C terminus of a possible membrane-bound protein. ORF2 (424 aa) and ORF3 (550 aa) are potential glycoprotein-encoding genes; the predicted aa sequences contain possible signal sequences, N-linked glycosylation sites and transmembrane domains; they also show homology to the glycoproteins gI and gE of herpes simplex virus type-1 (HSV-1), and the related proteins of pseudorabies virus and varicella-zoster virus. The predicted aa sequence of ORF4 shares no homology with other known herpesvirus proteins, but the nucleotide sequence shows a high level of homology with the corresponding region of the EHV-4 genome. ORF5 may be related to US9 of HSV-1.  相似文献   

3.
Here we present a new sliding window-based method specially designed to detect selective constraints in specific regions of a multiple protein-coding sequence alignment. In contrast to previous window-based procedures, our method is based on a nonarbitrary statistical approach to find the appropriate codon-window size to test deviations of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions from the expectation. The probabilities of dN and dS are obtained from simulated data and used to detect significant deviations of dN and dS in a specific window region of the real sequence alignment. The nonsynonymous-to-synonymous rate ratio (w = dN/dS) was used to highlight selective constraints in any window wherein dS or dN was significantly different from the expectation. In these significant windows, w and its variance [V(w)] were calculated and used to test the neutral hypothesis. Computer simulations showed that the method is accurate even for highly divergent sequences. The main advantages of the new method are that it (i) uses a statistically appropriate window size to detect different selective patterns, (ii) is computationally less intensive than maximum likelihood methods, and (iii) detects saturation of synonymous sites, which can give deviations from neutrality. Hence, it allows the analysis of highly divergent sequences and the test of different alternative hypothesis as well. The application of the method to different human immunodeficiency virus type 1 and to foot-and-mouth disease virus genes confirms the action of positive selection on previously described regions as well as on new regions.  相似文献   

4.
5.
Human papillomavirus type 16 (HPV16) is the primary etiological agent of cervical cancer, the second most common cancer in women worldwide. Complete genomes of 12 isolates representing the major lineages of HPV16 were cloned and sequenced from cervicovaginal cells. The sequence variations within the open reading frames (ORFs) and noncoding regions were identified and compared with the HPV16R reference sequence. This whole-genome approach gives us unprecedented precision in detailing sequence-level changes that are under selection on a whole-viral-genome scale. Of 7,908 base pair nucleotide positions, 313 (4.0%) were variable. Within the 2,452 amino acids (aa) comprising 8 ORFs, 243 (9.9%) amino acid positions were variable. In order to investigate the molecular evolution of HPV16 variants, maximum likelihood models of codon substitution were used to identify lineages and amino acid sites under selective pressure. Five codon sites in the E5 (aa 48, 65) and E6 (aa 10, 14, 83) ORFs were demonstrated to be under diversifying selective pressure. The E5 ORF had the overall highest nonsynonymous/synonymous substitution rate (omega) ratio (M3 = 0.7965). The E2 gene had the next-highest omega ratio (M3 = 0.5611); however, no specific codons were under positive selection. These data indicate that the E6 and E5 ORFs are evolving under positive Darwinian selection and have done so in a relatively short time period. Whether response to selective pressure upon the E5 and E6 ORFs contributes to the biological success of HPV16, its specific biological niche, and/or its oncogenic potential remains to be established.  相似文献   

6.
A Kato  I Sato  T Ihara  S Ueda  A Ishihama  K Hirai 《Gene》1989,84(2):399-405
The genomes of two avian herpesviruses, Marek's disease virus type 1 (MDV1) and herpesvirus of turkey (HVT), share close homology only within certain DNA regions. One such homologous region of HVT DNA was cloned and sequenced. Two open reading frames (ORFs) were found in the long unique region, ORF1 encoding the glycoprotein A (gA), and ORF2 encoding a still unidentified protein. These two HVT-ORFs are located at almost the same positions as the homologous MDV1-ORFs. The nucleotide sequence homologies between HVT and MDV1 were 73% and 68% for ORF1 and ORF2, respectively. Both the 5'- and 3'-noncoding regions, however, are less conserved. The third letter within every codon of ORF1 and ORF2 showed a mismatch of greater than 50% between the two viruses. The amino acid (aa) sequence homologies between the corresponding putative viral proteins are 83% and 80% for ORF1 (gA) and ORF2, respectively. More than 90% homology was observed in the C-terminal region of ORF1 (gA). Furthermore, the deduced aa sequences for both of the ORFs in these two viruses showed considerable homology to two adjoining genes in herpes simplex virus type 1, the glycoprotein C and UL45 genes.  相似文献   

7.
A typical immunoglobulin (Ig) molecule is composed of four polypeptide chains: two identical heavy (H) chains and two identical light (L) chains. This tetrameric structure is conserved in almost all jawed vertebrate species. However, it has been discovered that camels and llamas (family: Camelidae) possess a type of dimeric Ig that consists of two H chains only. These H chains do not associate with L chains, and they do not have the first constant region (CH1), which is present in the conventional Ig. In spite of these changes, the dimeric Ig maintains the normal immune function. To understand the evolution of the dimeric Ig, we studied the phylogenetic relationships of the variable region (V(H)H) genes of the dimeric Ig from Camelidae and those (V(H)) of the conventional Ig from mammals. The results showed that the V(H)H genes form a monophyletic cluster within one of the mammalian V(H) groups, group C. We examined the type of selective force in complementarity-determining regions (CDRs) and framework regions (FRs) by comparing the rate of synonymous (dS) and nonsynonymous (dN) substitutions. We found that the results obtained from V(H)H genes were similar to those from V(H) genes in that CDRs showed an excess of dN over dS (indicating positive selection), whereas the reverse was true for FRs (purifying selection). However, when the extent of positive selection or purifying selection was investigated at each codon site, three major differences between V(H)H and V(H) genes were found. That is, very different types of selective force were observed between V(H)H and V(H) genes (1) at the sites that contact the L chain in the conventional Ig, (2) at the sites that interact with the CH1 region in the conventional Ig, and (3) in the H1 loop. Our findings suggest that adaptive evolution has occurred in the functionally important sites of the V(H)H genes to maintain the normal immune function in the dimeric Ig.  相似文献   

8.
《Gene》1997,185(2):181-186
Bovine adenovirus type 2 (BAV2) is a medium size double-stranded DNA virus which infects both bovine and ovine species, resulting in mild respiratory and gastrointestinal disorders. To better understand the virus and its growth characterisitics in Madin-Darby bovine kidney (MDBK) cells, we have cloned and sequenced the extreme right-end segment of the BAV2 genome (90.5–100 map units). Analysis of the nucleotide sequence revealed 40 potential open reading frames (ORFs) with coding capacity for polypeptides that are 25 or more amino acid (aa) residues long. Six of these ORFs encode polypeptides that show homology to well-characterized early region 4 (E4) proteins of human adenovirus type 2 (Ad2) and Ad12. ORF1 has the potential to encode a 114 aa long polypeptide that is 54% homologous to the E4 14 kDa protein of Ad2. ORF2 encodes a 78 aa long polypeptide that exhibits 40% homology to the E4 13 kDa protein of Ad2. ORFs 3–6 encode polypeptides that have homology to the E4 34 kDa protein encoded by ORF6 of Ad2 and Ad12. ORFs 3, 4 and 5 encode 128, 96 and 31 aa long polypeptides, respectively. The 128-aa polypeptide exhibits 59% homology, while the 96 and 31 aa long polypeptides exhibit 61% and 70% homology to the E4 34 kDa protein, respectively. ORF6 has the potential to encode a 57 aa long polypeptide that has 67% homology to the E4 34 kDa protein of Ad2 and 50% homology to the E4 34 kDa protein of Ad12.  相似文献   

9.
Previous studies of the avian reovirus strain S1133 (ARV-S1133) S1 genome segment revealed that the open reading frame (ORF) encoding the final sigmaC viral cell attachment protein initiates over 600 nucleotides distal from the 5' end of the S1 mRNA and is preceded by two predicted small nonoverlapping ORFs. To more clearly define the translational properties of this unusual polycistronic RNA, we pursued a comparative analysis of the S1 genome segment of the related Nelson Bay reovirus (NBV). Sequence analysis indicated that the 3'-proximal ORF present on the NBV S1 genome segment also encodes a final sigmaC homolog, as evidenced by the presence of an extended N-terminal heptad repeat characteristic of the coiled-coil region common to the cell attachment proteins of reoviruses. Most importantly, the NBV S1 genome segment contains two conserved ORFs upstream of the final sigmaC coding region that are extended relative to the predicted ORFs of ARV-S1133 and are arranged in a sequential, partially overlapping fashion. Sequence analysis of the S1 genome segments of two additional strains of ARV indicated a similar overlapping tricistronic gene arrangement as predicted for the NBV S1 genome segment. Expression analysis of the ARV S1 genome segment indicated that all three ORFs are functional in vitro and in virus-infected cells. In addition to the previously described p10 and final sigmaC gene products, the S1 genome segment encodes from the central ORF a 17-kDa basic protein (p17) of no known function. Optimizing the translation start site of the ARV p10 ORF lead to an approximately 15-fold increase in p10 expression with little or no effect on translation of the downstream final sigmaC ORF. These results suggest that translation initiation complexes can bypass over 600 nucleotides and two functional overlapping upstream ORFs in order to access the distal final sigmaC start site.  相似文献   

10.
Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the ‘edges’ of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage‐specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage‐specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage‐specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters.  相似文献   

11.
The nucleotide sequence of the genome of equine arteritis virus (EAV) was determined from a set of overlapping cDNA clones and was found to contain eight open reading frames (ORFs). ORFs 2 through 7 are expressed from six 3'-coterminal subgenomic mRNAs, which are transcribed from the 3'-terminal quarter of the viral genome. A number of these ORFs are predicted to encode structural EAV proteins. The organization and expression of the 3' part of the EAV genome are remarkably similar to those of coronaviruses and toroviruses. The 5'-terminal three-quarters of the genome contain the putative EAV polymerase gene, which also shares a number of features with the corresponding gene of corona- and toroviruses. The gene contains two large ORFs, ORF1a and ORF1b, with an overlap region of 19 nucleotides. The presence of a "shifty" heptanucleotide sequence in this region and a downstream RNA pseudoknot structure indicate that ORF1b is probably expressed by ribosomal frameshifting. The frameshift-directing potential of the ORF1a/ORF1b overlap region was demonstrated by using a reporter gene. Moreover, the predicted ORF1b product was found to contain four domains which have been identified in the same relative positions in coronavirus and torovirus ORF1b products. The sequences of the EAV and coronavirus ORF1a proteins were found to be much more diverged. The EAV ORF1a product contains a putative trypsinlike serine protease motif. Our data indicate that EAV, presently considered a togavirus, is evolutionarily related to viruses from the coronaviruslike superfamily.  相似文献   

12.
Olive latent virus 1 (OLV-1) is a species of the Necrovirus genus. So far, it has been reported to infect olive, citrus tree and tulip. Here, we determined and analysed the complete genomic sequence of an isolate designated as CM1, which was collected from tomato plant in the Wielkopolska region of Poland and represents the prevalent isolate of OLV-1. The CM1 genome consists of monopartite single-stranded positive-sense RNA genome sized 3,699 nt with five open reading frames (ORFs) and small inter-cistronic regions. ORF1 encodes a polypeptide with a molecular weight of 23 kDa and the read-through (RT) of its amber stop codon results in ORF1 RT that encodes the virus RNA-dependent RNA polymerase. ORF2 and ORF3 encode two peptides, with 8 kDa and 6 kDa, respectively, which appear to be involved in cell-to-cell movement. ORF4 is located in the 3′ terminal and encodes a protein with 30 kDa identified as the viral coat protein (CP). The differences in CP region of four OLV-1 isolates whose sequences have been deposited in GenBank were observed. Nucleotide sequence identities of the CP of tomato CM1 isolate with those of olive, citrus and tulip isolates were 91.8%, 89.5% and 92.5%, respectively. In contrast to other OLV-1 isolates, CM1 induced necrotic spots on tomato plants and elicited necrotic local lesions on Nicotiana benthamiana, followed by systemic infection. This is the third complete genomic sequence of OLV-1 reported and the first one from tomato.  相似文献   

13.
Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and ∼95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.  相似文献   

14.
Evolution of Tomato yellow leaf curl virus–Mild (TYLCV-Mld[RE]) (family Geminiviridae, genus Begomovirus) was monitored in La Réunion island from its first upsurge in 1997 until 2004. Two genome fragments, one comprising partial C4 and C1 open reading frames (ORFs), and the other comprising part of the V1 and V2 ORFs and part of the intergenic region were sequenced in 111 isolates. The very low initial diversity of TYLCV-Mld[RE] in La Réunion was followed by a quasi-linear increase in genetic diversity across years. In addition, the population effective size of TYLCV-Mld[RE] has undergone a sudden increase from 2001 to 2004, which is consistent with a founder effect due to the introduction of a small number of virus individuals in an insular environment. Surprisingly, one nucleotide substitution introducing a premature stop codon in the C4 ORF was observed in an increasing number of isolates in the population of TYLCV-Mld[RE] over time, contrasting with the other substitutions which were observed at low frequencies. This substitution which shortens the C4 protein by four amino acids may therefore have been selected during TYLCV-Mld[RE] evolution. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

15.
猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)可引起妊娠母猪流产,早产,产死胎、弱胎、木乃伊胎及仔猪和肥育猪的呼吸道症状.最先于20世纪80年代末期爆发于美国和欧洲一些国家,随后很快传至全世界,给世界养猪业造成了巨大的损失.我国在1995年底爆发该病,之后蔓延到我国很多省份.1996年郭宝清、杨汉春等分别从疑似PRRS的病例中分离出PRRSV[1,2].  相似文献   

16.
An excess of nonsynonymous substitutions over synonymous ones is an important indicator of positive selection at the molecular level. A lineage that underwent Darwinian selection may have a nonsynonymous/synonymous rate ratio (dN/dS) that is different from those of other lineages or greater than one. In this paper, several codon-based likelihood models that allow for variable dN/dS ratios among lineages were developed. They were then used to construct likelihood ratio tests to examine whether the dN/dS ratio is variable among evolutionary lineages, whether the ratio for a few lineages of interest is different from the background ratio for other lineages in the phylogeny, and whether the dN/dS ratio for the lineages of interest is greater than one. The tests were applied to the lysozyme genes of 24 primate species. The dN/dS ratios were found to differ significantly among lineages, indicating that the evolution of primate lysozymes is episodic, which is incompatible with the neutral theory. Maximum- likelihood estimates of parameters suggested that about nine nonsynonymous and zero synonymous nucleotide substitutions occurred in the lineage leading to hominoids, and the dN/dS ratio for that lineage is significantly greater than one. The corresponding estimates for the lineage ancestral to colobine monkeys were nine and one, and the dN/dS ratio for the lineage is not significantly greater than one, although it is significantly higher than the background ratio. The likelihood analysis thus confirmed most, but not all, conclusions Messier and Stewart reached using reconstructed ancestral sequences to estimate synonymous and nonsynonymous rates for different lineages.   相似文献   

17.
Evolutionary pressures on proteins are often quantified by the ratio of substitution rates at non-synonymous and synonymous sites. The dN/dS ratio was originally developed for application to distantly diverged sequences, the differences among which represent substitutions that have fixed along independent lineages. Nevertheless, the dN/dS measure is often applied to sequences sampled from a single population, the differences among which represent segregating polymorphisms. Here, we study the expected dN/dS ratio for samples drawn from a single population under selection, and we find that in this context, dN/dS is relatively insensitive to the selection coefficient. Moreover, the hallmark signature of positive selection over divergent lineages, dN/dS>1, is violated within a population. For population samples, the relationship between selection and dN/dS does not follow a monotonic function, and so it may be impossible to infer selection pressures from dN/dS. These results have significant implications for the interpretation of dN/dS measurements among population-genetic samples.  相似文献   

18.
19.
Tuco-tucos (Ctenomys) and related coruros (Spalacopus) are South American subterranean rodents. An energetically demanding lifestyle within the hypoxic, underground atmosphere may change the selective regime on oxidative phosphorylation. We examined whether weak and/or episodic positive directional selection affected the evolution of two mitochondrial genes (COX2, CytB), in a background of purifying selection in these lineages. We estimated rates of synonymous (dS) and non-synonymous (dN) substitutions and found: 1) significantly higher dN/dS ratio in subterranean groups relative to non-subterranean related species, and 2) two codons in each gene under episodic selection: 94 and 277 of COX2 and 269 and 307 of CytB.  相似文献   

20.
Sequence and organization of barley yellow dwarf virus genomic RNA.   总被引:23,自引:5,他引:18       下载免费PDF全文
The nucleotide sequence of the genomic RNA of barley yellow dwarf virus, PAV serotype was determined, except for the 5'-terminal base, and its genome organization deduced. The 5,677 nucleotide genome contains five large open reading frames (ORFs). The genes for the coat protein (1) and the putative viral RNA-dependent RNA polymerase were identified. The latter shows a striking degree of similarity to that of carnation mottle virus (CarMV). By comparison with corona- and retrovirus RNAs, it is proposed that a translational frameshift is involved in expression of the polymerase. An ORF encoding an Mr 49,797 protein (50K ORF) may be translated by in-frame readthrough of the coat protein stop codon. The coat protein, an overlapping 17K ORF, and a 3'6.7K ORF are likely to be expressed via subgenomic mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号