首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cis- and trans-unsaturated fatty acids with 18 carbon atoms (oleic, linoleic, elaidic and linolelaidic acid) inhibited aggregation of washed rabbit platelets stimulated with collagen, arachidonic acid and U46619 when in the same concentration ranges. Thrombin-induced aggregation was not affected by any of them. Saturated fatty acid (stearic acid) had no effect on this response. The inhibition is independent of the induced change in membrane fluidity, since trans-isomers could not induce the change in fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Unsaturated fatty acids, except linoleic acid, did not interfere with the formation of thromboxane B2 from exogenously added arachidonic acid. All the unsaturated fatty acids only slightly inhibited the arachidonic acid liberation by phospholipase A2 in platelet lysate. This indicates that the unsaturated fatty acids may block a process after formation of thromboxane A2 in response to collagen and arachidonic acid. The increase in phosphatidic acid formation stimulated with U46619 was inhibited dose dependently by each of the unsaturated fatty acids but that stimulated with thrombin was not affected by any of them. Phospholipase C activity measured by diacylglycerol formation in unstimulated platelet lysate was not inhibited by the fatty acids. The elevation of cytosolic free Ca2+ induced by arachidonic acid or U46619 and Ca2+ influx by collagen were inhibited almost completely at the same concentration as that which inhibited their aggregation. These data suggest that the unsaturated fatty acids were intercalated into the membrane and inhibited collagen- and arachidonic acid-induced platelet aggregation by causing a significant suppression of the thromboxane A2-mediated increase in cytosolic free Ca2+, probably due to interference with the receptor-operated Ca2+ channel.  相似文献   

2.
1. Exposure of platelets to exogenous arachidonic acid results in aggregation and secretion, which are inhibited at high arachidonate concentrations. The mechanisms for this have not been elucidated fully. In our studies in platelet suspensions, peak aggregation and secretion occurred at 2-5 microM-sodium arachidonate, with complete inhibition around 25 microM. 2. In platelets loaded with quin2 or fura-2, the cytoplasmic Ca2+ concentration, [Ca2+]i, rose in the presence of 1 mM-CaCl2 from 60-80 nM to 300-500 nM at 2-5 microM-arachidonate, followed by inhibition to basal values at 25-50 microM. Thromboxane production was not inhibited at 25 microM-arachidonate. Cyclic AMP increased in the presence of theophylline, from 3.5 pmol/10(8) platelets in unexposed platelets to 8 pmol/10(8) platelets at 50 microM-arachidonate; all platelet responses were inhibited with doubling of cyclic AMP contents. 3. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine attenuated the inhibitory effect of arachidonate, suggesting that it is mediated by increased platelet cyclic AMP and that it is unlikely to be due to irreversible damage to platelets. 4. Aspirin or the combined lipoxygenase/cyclo-oxygenase inhibitor BW 755C did not prevent the inhibition by arachidonate of either [Ca2+]i signals or aggregation induced by U46619. 5. Thus high arachidonate concentrations inhibit Ca2+ mobilization in platelets, and this is mediated by stimulation of adenylate cyclase. High arachidonate concentrations influence platelet responses by modulating intracellular concentrations of two key messenger molecules, cyclic AMP and Ca2+.  相似文献   

3.
Superoxide dismutase (SOD) triggers activation of human platelets exposed to subthreshold concentrations of arachidonic acid and collagen. The subthreshold concentrations used are not able to activate platelets but "prime" platelets to be activated by SOD. The addition of SOD to arachidonic acid-or collagen-primed platelets induced aggregation, thromboxane A2 production, and release of [3H]serotonin. Superoxide dismutase does not have any effect on resting platelets and ADP-, thrombin-, calcium ionophore A23187-, PAF-, or U46619-stimulated platelets. Furthermore, superoxide dismutase-dependent platelet activation is fully prevented by catalase and/or aspirin, suggesting a role for H2O2 and the involvement of the cyclooxygenase pathway of arachidonic acid in such activation.  相似文献   

4.
The low affinity receptor for immunoglobulin G, FcgammaRIIA, is expressed in human platelets, mediates heparin-induced thrombocytopenia and participates to platelet activation induced by von Willebrand factor. In this work, we found that stimulation of platelets with agonists acting on G-protein-coupled receptors resulted in the tyrosine phosphorylation of FcgammaRIIA, through a mechanism involving a Src kinase. Treatment of platelets with the blocking monoclonal antibody IV.3 against FcgammaRIIA, but not with control IgG, inhibited platelet aggregation induced by TRAP1, TRAP4, the thromboxane analogue U46619, and low concentrations of thrombin. By contrast, platelet aggregation induced by high doses of thrombin was unaffected by blockade of FcgammaRIIA. We also found that the anti-FcgammaRIIA monoclonal antibody IV.3 inhibited pleckstrin phosphorylation and calcium mobilization induced by low, but not high, concentrations of thrombin. In addition, thrombin- or U46619-induced tyrosine phosphorylation of several substrates typically involved in FcgammaRIIA-mediated signalling, such as Syk and PLCgamma2, was clearly reduced by incubation with anti-FcgammaRIIA antibody IV.3. Upon stimulation with thrombin, FcgammaRIIA relocated in lipid rafts, and thrombin-induced tyrosine phosphorylation of FcgammaRIIA occurred within these membrane domains. Controlled disruption of lipid rafts by depleting membrane cholesterol prevented tyrosine phosphorylation of FcgammaRIIA and impaired platelet aggregation induced by U46619 or by low, but not high, concentrations of thrombin. These results indicate that FcgammaRIIA can be activated in human platelets downstream G-protein-coupled receptors and suggest a novel general mechanism for the reinforcement of platelet activation induced by low concentrations of agonists.  相似文献   

5.
The inhibitory effects of three pure compounds isolated from wood garlic, 2,4,5-trithiahexane (I), 2,4,5,7-tetrathiaoctane (II), and 2,4,5,7-tetrathiaoctane 2,2-dioxide (III), on rabbit platelet aggregation induced by collagen, arachidonic acid, U46619, ADP (adenosine 5'-diphosphate), PAF (platelet aggregating factor), and thrombin were studied in vitro. The anti-aggregating activity of 2,4,5,7-tetrathiaoctane 4,4-dioxide (IV) was also measured with collagen and arachidonic acid. I, II, III, and IV inhibited the platelet aggregation induced by all tested agonists. I, II, and III exhibited a stronger inhibitory effect against the thrombin-induced aggregation of GFP (gel-filtered platelets) than against the aggregation induced by the other agonists. Notably, the IC50 value for III was 4 microM, which is approximately 2.5 times stronger than MATS (methyl allyl trisulfide), a major anti-platelet compound isolated from garlic. In inhibiting collagen-induced aggregation, II was as potent as MATS and aspirin, with a marked disaggregation effect on the secondary aggregation by arachidonic acid, at the rate of 47.05%/min at a concentration of 10(-4) M. I, II, and III also suppressed U46619-induced aggregation. These results suggest that sulfur-containing compounds in wood garlic not only inhibit arachidonic acid metabolism but also suppress aggregation in association with the function of the platelet plasma membrane.  相似文献   

6.
Carnitine is a physiological cellular constituent that favors intracellular fatty acid transport, whose role on platelet function and O(2) free radicals has not been fully investigated. The aim of this study was to seek whether carnitine interferes with arachidonic acid metabolism and platelet function. Carnitine (10-50 microM) was able to dose dependently inhibit arachidonic acid incorporation into platelet phospholipids and agonist-induced arachidonic acid release. Incubation of platelets with carnitine dose dependently inhibited collagen-induced platelet aggregation, thromboxane A(2) formation, and Ca(2+) mobilization, without affecting phospholipase A(2) activation. Furthermore, carnitine inhibited platelet superoxide anion (O(2)(-)) formation elicited by arachidonic acid and collagen. To explore the underlying mechanism, arachidonic acid-stimulated platelets were incubated with NADPH. This study showed an enhanced platelet O(2)(-) formation, suggesting a role for NADPH oxidase in arachidonic acid-mediated platelet O(2)(-) production. Incubation of platelets with carnitine significantly reduced arachidonic acid-mediated NADPH oxidase activation. Moreover, the activation of protein kinase C was inhibited by 50 microM carnitine. This study shows that carnitine inhibits arachidonic acid accumulation into platelet phospholipids and in turn platelet function and arachidonic acid release elicited by platelet agonists.  相似文献   

7.
The action of phospholipases A2 and C in the course of collagen-stimulated platelet activation and the effect of cytochalasins on the responses were studied. Stimulation of human platelets with collagen was accompanied by aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release. However, in the presence of a cyclooxygenase inhibitor or a thromboxane A2 (TXA2) receptor antagonist, collagen induced only weak arachidonic acid release and weak inositol phosphate formation. The TXA2 mimetic agonist U46619 induced all the responses except for arachidonic acid release, which was induced by synergistic action of collagen and U46619. The result that U46619 did not induce arachidonic acid release despite the activation of phospholipase C suggested that arachidonic acid was not released via phospholipase C but by phospholipase A2. These findings suggested that collagen initially induced weak activation of phospholipases A2 and C and that further activation of phospholipase C as well as Ca2+ mobilization and aggregation were induced by TXA2, whereas further activation of phospholipase A2 required the synergistic action of collagen and TXA2. Platelets pretreated with cytochalasins did not respond to collagen. Further analysis revealed that the initial activation of phospholipases A2 and C was specifically inhibited by cytochalasins, but the responses induced by U46619 or a synergistic action of collagen and U46619 were not inhibited. Therefore, we proposed that interaction of collagen receptor with actin filaments might have some roles in the collagen-induced initial activation of phospholipases.  相似文献   

8.
Effects and the mechanism of the antiplatelet actions of beclobrinic acid, free acid form of a new hypolipidemic agent beclobrate [(+)-2-[d-(P-chlorophenyl)p-tolyl)oxy)-2-methyl-butyrate), were examined using human platelets. Platelet-rich plasma (PRP) which has been prelabeled with (14C)-serotonin was incubated with beclobrinic acid (BBA) for one minute before the addition of various agonists. BBA (0.1-1.5 mM) inhibited platelet aggregation and serotonin secretion induced by ADP, epinephrine, arachidonic acid and collagen in a concentration dependent manner. BBA also inhibited arachidonic acid-induced production of malondialdehyde (MDA), a byproduct of prostaglandins, in a concentration dependent manner. However, up to 1.0 mM BBA did not inhibit platelet aggregation induced by U46619, a stable analog of prostaglandin H2. In other experiments BBA also blocked thrombin-induced release of (3H)-arachidonic acid from platelet phospholipids. These findings suggest that: (a) BBA inhibits platelet aggregation and serotonin secretion by inhibiting prostaglandin synthesis at two steps. First by interfering in the release of arachidonic acid from platelet phospholipids and second by inhibiting its conversion into prostaglandins; and (b) BBA does not inhibit the action of prostaglandins on human platelets.  相似文献   

9.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

10.
Rhodnius prolixus aggregation inhibitor 1 (RPAI-1), a 19-kDa protein isolated from the salivary gland of R. prolixus, was purified by strong cation exchange and reverse-phase high performance liquid chromatographies. Based on 49 amino-terminal amino acid sequences of RPAI-1, primers were produced to generate probes to screen an R. prolixus salivary gland cDNA library. A phage containing the full-length clone of RPAI-1 codes for a mature protein of 155 amino acids. RPAI-1 shows sequence homology to triabin and pallidipin, lipocalins from Triatoma pallidipennis. The cDNA sequence was cloned in Pet17B Escherichia coli expression vector, producing an active peptide. RPAI-1 inhibits human platelet-rich plasma aggregation triggered by low concentrations of ADP, collagen, arachidonic acid, thromboxane A(2) mimetics (U46619), and very low doses of thrombin and convulxin. Here we show that ADP is the target of RPAI-1 since (i) RPAI-1 inhibits ADP-dependent large aggregation formation and secretion triggered by U46619, without affecting Ca(2+) increase and shape change; (ii) ADP restored the inhibition of U46619-induced platelet aggregation by RPAI-1, (iii) PGE(1)-induced increase of cAMP (which is antagonized by U46619 in an ADP-dependent manner) was restored by RPAI-1, (iv) RPAI-1 inhibits low concentrations of ADP-mediated responses of indomethacin-treated platelets, and (v) RPAI-1 binds to ADP, as assessed by large zone chromatography. RPAI-1 affects neither integrin alpha(2)beta(1)- nor glycoprotein VI-mediated platelet responses. We conclude that RPAI-1 is the first lipocalin described that inhibits platelet aggregation by a novel mechanism, binding to ADP.  相似文献   

11.
The work presented here demonstrates that platelets from mice lacking LAT (linker for the activation of T cells) show reversible aggregation in response to concentrations of collagen that cause TxA2/ADP-dependent irreversible aggregation of control platelets. The aggregation defect of the LAT-deficient platelets was shown to be the result of almost no TxA2 production and significantly diminished ADP secretion. In contrast, the LAT deficiency does not affect aggregation induced by high concentrations of collagen because that aggregation is not dependent on TxA2 and/or ADP. Even though ADP and TxA2 provide amplification signals for platelet activation in response to low concentrations of collagen, LAT-deficient platelets hyperaggregate to low levels of U46619, a TxA2 analog, or ADP. Though the mechanism(s) of costimulatory signals by collagen, ADP, and TxA2 remains unidentified, it is clear that LAT plays a positive role in collagen-induced, TxA2/ADP-dependent aggregation, and a negative role in TxA2 or ADP-induced platelet aggregation.  相似文献   

12.
Only tetraprenol (n = 4), among the (n)-polyprenols studied, induced activation of rabbit platelets. Tetraprenol-induced responses, including platelet aggregation, Ca2+ mobilization, inositol phosphate formation, and arachidonic acid release, were greatly inhibited by a thromboxane A2 (TXA2) receptor antagonist and a cyclooxygenase inhibitor, indicating an essential role for endogenously produced TXA2. The TXA2-mimetic agonist U46619 induced platelet aggregation, Ca2+ mobilization and phospholipase C action but did not induce arachidonic acid release. These results suggest that arachidonic acid is not released via phospholipase C but by phospholipase A2, and this is also supported by the finding that phospholipase C action was inhibited by depletion of extracellular Ca2+, while arachidonic acid release was not. Full arachidonic acid release was found to be induced by the synergistic action of U46619 and tetraprenol. Therefore, the initial, most essential response induced by tetraprenol is a small arachidonic acid release by phospholipase A2, which results in initial TXA2 formation. Further action of phospholipase C as well as Ca2+ mobilization and aggregation were induced by the initially formed TXA2 while further activation of phospholipase A2 required the synergistic action of tetraprenol and TXA2.  相似文献   

13.
Protein-tyrosine phosphorylation during platelet activation is inhibited under conditions that inhibit platelet binding of fibrinogen and aggregation. We suggested that pp60src, a major platelet tyrosine kinase, or its protein substrates might become associated with the cytoskeleton upon platelet stimulation, and that this might be related to aggregation. By Western blotting with an anti-Src monoclonal antibody, we found time-dependent association of pp60src with the cytoskeleton (10,000 x g Triton X-100-insoluble matrix) but not the "membrane" cytoskeleton (100,000 x g Triton X-100-insoluble matrix) in platelets activated by U46619 (PGH2 analog). Cytoskeletal association and platelet aggregation were inhibited by the peptide Arg-Gly-Asp-Ser (RGDS) (but not by Arg-Gly-Glu-Ser (RGES)), by 10E5 antibody against glycoprotein (Gp) IIb/IIIa, and by EGTA. U46619-induced association of pp60src with cytoskeleton but not secretion or aggregation was inhibited by cytochalasin D (2 microM). Both cytochalasin D and RGDS inhibited "slow" tyrosine phosphorylation of platelet proteins. Association of pp60src with cytoskeleton induced by U46619 or ADP was not blocked by aspirin. Aspirin blocked epinephrine-induced association of pp60src with the cytoskeleton during a second phase of aggregation when an initial phase had occurred without shape change or secretion. Association of GpIIb/IIIa with the cytoskeleton also accompanied platelet aggregation, shape change, and actin polymerization; this was shown with anti-GpIIb and anti-GpIIIa antibodies. Association of pp60src and GpIIb/IIIa with the cytoskeleton and slow tyrosine phosphorylation are related phenomena.  相似文献   

14.
Sphingosine is a potent inhibitor of [3H]phorbol dibutyrate binding and protein kinase C activity in vitro and in human platelets (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. (1986) J. Biol. Chem. 261, 12604-12609). Preincubation of platelets with sphingosine resulted in the inhibition of platelet secretion and second phase aggregation in response to ADP, gamma-thrombin, collagen, arachidonic acid, and platelet activating factor. Sphingosine did not affect the initial shape change of platelets or the first phase of aggregation in response to these agonists. Ristocetin-induced platelet agglutination was not affected by sphingosine. Sphingosine inhibition of secondary aggregation (secretion and second phase aggregation) was overcome by phorbol dibutyrate and by the cell-permeable protein kinase C activator, dioctanoylglycerol. Furthermore, platelet secretion and irreversible aggregation were induced by protein kinase C activators in platelets that had been "primed" to undergo initial shape change and first phase aggregation by low concentrations of agonists. These results suggest that protein kinase C activation is a necessary component in the signal transducing pathways that lead to platelet activation. Higher concentrations of agonists, however, induced irreversible aggregation and partial secretion in the presence of sphingosine, suggesting the existence of protein kinase C-independent pathways for platelet activation. These results demonstrate the utility of sphingosine as a pharmacologic tool in probing the role of protein kinase C in signal transduction.  相似文献   

15.
F2-isoprostanes are a recently discovered series of prostaglandin (PG)F2-like compounds that are produced in vivo in humans by nonenzymatic free radical catalyzed peroxidation of arachidonic acid. One of the compounds that can be produced in abundance by this mechanism is 8-epi-PGF2 alpha. 8-epi-PGF2 alpha is a potent vasoconstrictor in the rat, an effect that has been shown to be mediated via interaction with vascular thromboxane (TxA2)/endoperoxide (PGH2) receptors. In an effort to further understand the biological properties of this prostanoid in relation to its ability to interact with TxA2/PGH2 receptors, we examined its effects on human and rat platelets. At concentrations of 10(-6) M and 10(-5) M, 8-epi-PGF2 alpha induced only a shape change in human platelets and at higher concentrations (10(-4) M) induced reversible but not irreversible aggregation. Both the shape change and reversible aggregation were unaffected by indomethacin but were inhibited by the TxA2/PGH2 receptor antagonist SQ29548. Conversely, 8-epi-PGF2 alpha inhibited platelet aggregation induced by the TxA2/PGH2 receptor agonists U46619 (10(-6) M) and IBOP (3.3 x 10(-7) M) with an IC50 of 1.6 x 10(-6) M and 1.8 x 10(-6) M, respectively. 8-epi-PGF2 alpha also inhibited platelet aggregation induced by arachidonic acid. Similarly, in rat platelets, 8-epi-PGF2 alpha alone induced only modest reversible aggregation but completely inhibited U46619-induced aggregation.  相似文献   

16.
Fifty-two 2-benzoylaminobenzoate analogs were synthesized and subjected to anti-platelet aggregation assay using arachidonic acid (AA), collagen (Col), thrombin (Thr), and U46619 as inducers. The results revealed that most of 2-benzoylaminobenzoic acid derivatives showed a selectively inhibitory effect on AA-induced platelet aggregation. As a result of the 2-benzoylaminobenzoic acid derivatives (18, 44, and 46), there were no inhibitory effects on platelet aggregation induced by U46619, but these elicited an inhibitory effect on thromboxane B(2) formation at 1.0microM. These 2-benzoylaminobenzoate analogs were therefore proposed as cyclooxygenase inhibitors.  相似文献   

17.
Thromboxane A(2) is a positive feedback lipid mediator produced following platelet activation. The G(q)-coupled thromboxane A(2) receptor subtype, TPalpha, and G(i)-coupled TPbeta subtype have been shown in human platelets. ADP-induced platelet aggregation requires concomitant signaling from two P2 receptor subtypes, P2Y1 and P2T(AC), coupled to G(q) and G(i), respectively. We investigated whether the stable thromboxane A(2) mimetic, (15S)-hydroxy-9, 11-epoxymethanoprosta-5Z,13E-dienoic acid (U46619), also causes platelet aggregation by concomitant signaling through G(q) and G(i), through co-activation of TPalpha and TPbeta receptor subtypes. Here we report that secretion blockade with Ro 31-8220, a protein kinase C inhibitor, completely inhibited U46619-induced, but not ADP- or thrombin-induced, platelet aggregation. Ro 31-8220 had no effect on U46619-induced intracellular calcium mobilization or platelet shape change. Furthermore, U46619-induced intracellular calcium mobilization and shape change were unaffected by A3P5P, a P2Y1 receptor-selective antagonist, and/or cyproheptadine, a 5-hydroxytryptamine subtype 2A receptor antagonist. Either Ro 31-8220 or AR-C66096, a P2T(AC) receptor selective antagonist, abolished U46619-induced inhibition of adenylyl cyclase. In addition, AR-C66096 drastically inhibited U46619-mediated platelet aggregation, which was further inhibited by yohimbine, an alpha(2A)-adrenergic receptor antagonist. Furthermore, inhibition of U46619-induced platelet aggregation by Ro 31-8220 was relieved by activation of the G(i) pathway by selective activation of either the P2T(AC) receptor or the alpha(2A)-adrenergic receptor. We conclude that whereas thromboxane A(2) causes intracellular calcium mobilization and shape change independently, thromboxane A(2)-induced inhibition of adenylyl cyclase and platelet aggregation depends exclusively upon secretion of other agonists that stimulate G(i)-coupled receptors.  相似文献   

18.
Anandamide (AEA) presents the four double bonds in the cis configuration, deriving from the arachidonic acid moiety. In the context of an antisense strategy based on the double bond configuration, all-trans AEA (t-AEA) was synthesized in high yield starting from all-trans methyl arachidonate and ethanolamine in the presence of KCN. t-AEA was assayed on rabbit platelet aggregation, obtaining effect only at high concentrations (>10(-4) M) after an also concentration-dependent lag phase. At lower concentrations it inhibited PAF-induced rabbit platelet aggregation with an IC(50)=4.6 x 10(-6) M. In contrast to anandamide, the activation of platelets was not due to the conversion of t-AEA to trans arachidonic acid, as ascertained by negative results with FAAH inhibitors. However, t-AEA was found to be a substrate for fatty acid amide hydrolase (FAAH), the enzyme that cleaves anandamide and regulates in vivo the magnitude and duration of the signaling induced by this lipid messenger.  相似文献   

19.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

20.
The effects of phorbol ester (PMA) and stable prostaglandin endoperoxide analog (U46619) on platelet interaction with a surface coated with monomeric type V collagen (CV substrate) and free Ca2+ concentration in platelet cytoplasm ([Ca2+]in) have been studied. In the absence of PMA and U46619, the discoid and spherical platelets from suspension are attached to CV substrate but are incapable of spreading and aggregation on the substrate. An addition of PMA (0.15-1.5 nM) or U46619 (1.5 microM) to the reaction mixture stimulates platelet spreading and the formation of multilayer (thrombi-like) aggregates on CV substrate. Using the fluorescent probe Quin 2, it was found that U46619 (0.1 microM) increases [Ca2+]in from the basal level (100-120 mM) to 600 nM. PMA (0.75-15 nM) exerts only a slight effect increasing [Ca2+]in by 30-40 nM. The data obtained suggest that the PMA-induced spreading and aggregation of platelets on CV substrate can occur via activation of protein kinase C at relatively low [Ca2+]in values. These results also testify to the existence of a substrate-independent mechanism of spreading of platelets activated in suspensions by soluble inducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号