首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

2.
Hesson T  Mannarino A  Cable M 《Biochemistry》2000,39(10):2619-2625
The hepatitis C virus (HCV) NS3 protein contains an amino terminal protease (NS3 aa. 1-180) and a carboxyl terminal RNA helicase (NS3 aa. 181-631). NS3 functions as a heterodimer of NS3 and NS4A (NS3/4A). NS3 helicase, a nucleic acid stimulated ATPase, can unwind RNA, DNA, and RNA:DNA duplexes, provided that at least one strand of the duplex contains a single-stranded 3' overhang (this strand of the duplex is referred to as the 3' strand). We have used 2'-O-methyl RNA (MeRNA) substrates to study the mechanism of NS3 helicase activity and to probe the relationship between its helicase and RNA-stimulated ATPase activities. NS3/4A did not unwind double-stranded (ds) MeRNA. NS3/4A unwinds hybrid RNA:MeRNA duplex containing MeRNA as the 5' strand but not hybrid duplex containing MeRNA as the 3' strand. The helicase activity of NS3/4A was 50% inhibited by 40 nM single-stranded (ss) RNA but only 35% inhibited by 320 nM ss MeRNA. Double-stranded RNA was 17 times as effective as double-stranded MeRNA in inhibiting NS3/4A helicase activity, while the apparent affinity of NS3/4A for ds MeRNA differed from ds RNA by only 2.4-fold. However ss MeRNA stimulated NS3/4A ATPase activity similar to ss RNA. These results indicate that the helicase mechanism involves 3' to 5' procession of the NS3 helicase along the 3' strand and only weak association of the enzyme with the displaced 5' strand. Further, our findings show that maximum stimulation of NS3 ATPase activity by ss nucleic acid is not directly related to procession of the helicase along the 3' strand.  相似文献   

3.
Helicases unwind RNA or DNA duplexes and displace proteins from nucleic acids in an ATP-dependent fashion. To unwind duplexes, helicases typically load onto one of the two nucleic acid strands, usually at a single-stranded region, and then translocate on this strand in a unidirectional fashion, thereby displacing the complementary DNA or RNA. Here we show that the DEAD-box RNA helicase Ded1 unwinds duplexes in a different manner. Ded1 uses the single-stranded region to gain access to the duplex. Strand separation is directly initiated from the duplex region and no covalent connection between the single strand and the duplex region is required. This new type of helicase activity explains observations with other DEAD-box proteins and may be the prototype for duplex-unwinding reactions in RNA metabolism.  相似文献   

4.
Members of the DExH/D family of proteins, a subset of helicase superfamily 2 (SF2), are involved in virtually all aspects of RNA metabolism. NPH-II, a prototypical member of this protein family, exhibits robust RNA helicase activity in vitro. Using a series of modified substrates to explore the unwinding mechanism of NPH-II, we observed that the helicase tracks exclusively on the loading strand, where it requires covalent continuity and specifically recognizes the ribose-phosphate backbone. NPH-II unwinding was unaffected by lesions and nicks on the top strand, which has a minimal role in substrate recognition. NPH-II required physical continuity of phosphodiester linkages on the loading strand, although abasic regions were tolerated. These findings suggest that SF2 helicases are mechanistically distinct from other helicase families that can tolerate breaks in the loading strand and for which bases are the primary recognition determinant.  相似文献   

5.
The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5′-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3′-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5′-terminus, a protruding 5′-terminus made the RNA 5′-triphosphate readily accessible to DENV NS3H. DENV NS3H preferentially binds RNA to DNA, and the functional interaction with RNA is sensitive to ionic strength.  相似文献   

6.
Viral RNA helicases of the NS3/NPH-II group unwind RNA duplexes by processive, directional translocation on one of the duplex strands. The translocation is preceded by a poorly understood unwinding initiation phase. For NPH-II from vaccinia virus, unwinding initiation is rate limiting for the overall unwinding reaction. To develop a mechanistic understanding of the unwinding initiation, we studied kinetic and thermodynamic aspects of this reaction phase for NPH-II in vitro, using biochemical and single molecule fluorescence approaches. Our data show that NPH-II functions as a monomer and that different stages of the ATP hydrolysis cycle dictate distinct binding preferences of NPH-II for duplex versus single-stranded RNA. We further find that the NPH-II-RNA complex does not adopt a single conformation but rather at least two distinct conformations in each of the analyzed stages of ATP hydrolysis. These conformations interconvert with rate constants that depend on the stage of the ATP hydrolysis cycle. Our data establish a basic mechanistic framework for unwinding initiation by NPH-II and suggest that the various stages of the ATP hydrolysis cycle do not induce single, stage-specific conformations in the NPH-II-RNA complex but primarily control transitions between multiple states.  相似文献   

7.
Vaccinia virus NPH-II is an essential nucleic acid-dependent nucleoside triphosphate that catalyzes unidirectional unwinding of duplex RNA containing a 3' tail. NPH-II is the prototypal RNA helicase of the DExH box protein family, which is defined by several shared sequence motifs. The contribution of the conserved QRKGRVGRVNPG region to enzyme activity was assessed by alanine-scanning mutagenesis. Ten mutated versions of NPH-II were expressed in vaccinia virus-infected BSC-40 cells and purified by nickel affinity chromatography and glycerol gradient sedimentation. The mutated proteins were characterized with respect to RNA helicase, nucleic acid-dependent ATPase, and RNA binding functions. Individual alanine substitutions at invariant residues Q-491, G-494, R-495, G-497, R-498, and G-502 caused severe defects in RNA unwinding that correlated with reduced rates of ATP hydrolysis. None of these mutations affected the binding of NPH-II to single-strand RNA or to the tailed duplex RNA used as a helicase substrate. Mutation of the strictly conserved position R-492 inhibited ATPase and helicase activities and also caused a modest decrement in RNA binding. Alanine mutations at the nonconserved position N-500 and the weakly conserved residue P-501 had no apparent effect on any activity associated with NPH-II, whereas a mutation at the weakly conserved position K-493 reduced helicase to one-third and ATPase to two-thirds of the activity of wild-type required for ATP hydrolysis and RNA unwinding but not for RNA binding. Because mutations in the HRxGRxxR motif of the prototypal DEAD box RNA helicase eIF-4A abolish or severely inhibit RNA binding, we surmise that the contribution of conserved helicase motifs to overall protein function is context dependent.  相似文献   

8.
Vaccinia virus nucleoside triphosphate phosphohydrolase II (NPH-II), a 3'-to-5' RNA helicase, displays sequence similarity to members of the DExH family of nucleic acid-dependent nucleoside triphosphatases (NTPases). The contributions of the conserved GxGKT and DExH motifs to enzyme activity were assessed by alanine scanning mutagenesis. Histidine-tagged versions of NPH-II were expressed in vaccinia virus-infected BSC40 cells and purified by nickel affinity and conventional fractionation steps. Wild-type His-NPH-II was indistinguishable from native NPH-II with respect to RNA helicase, RNA binding, and nucleic acid-stimulated NTPase activities. The K-191-->A (K191A), D296A, and E297A mutant proteins bound RNA as well as wild-type His-NPH-II did, but they were severely defective in NTPase and helicase functions. The H299A mutant was active in RNA binding and NTP hydrolysis but was defective in duplex unwinding. Whereas the NTPase of wild-type NPH-II was stimulated > 10-fold by polynucleotide cofactors, the NTPase of the H299A mutant was nucleic acid independent. Because the specific NTPase activity of the H299A mutant in the absence of nucleic acid was near that of wild-type enzyme in the presence of DNA or RNA and because the Km for ATP was unaltered by the H299A substitution, we regard this mutation as a "gain-of-function" mutation and suggest that the histidine residue in the DExH box is required to couple the NTPase and helicase activities.  相似文献   

9.
Gwack Y  Yoo H  Song I  Choe J  Han JH 《Journal of virology》1999,73(4):2909-2915
Hepatitis G virus (HGV) nonstructural protein 3 (NS3) contains amino acid sequence motifs typical of ATPase and RNA helicase proteins. In order to examine the RNA helicase activity of the HGV NS3 protein, the NS3 region (amino acids 904 to 1580) was fused with maltose-binding protein (MBP), and the fusion protein was expressed in Escherichia coli and purified with amylose resin and anion-exchange chromatography. The purified MBP-HGV/NS3 protein possessed RNA-stimulated ATPase and RNA helicase activities. Characterization of the ATPase and RNA helicase activities of MBP-HGV/NS3 showed that the optimal reaction conditions were similar to those of other Flaviviridae viral NS3 proteins. However, the kinetic analysis of NTPase activity showed that the MBP-HGV/NS3 protein had several unique properties compared to the other Flaviviridae NS3 proteins. The HGV NS3 helicase unwinds RNA-RNA duplexes in a 3'-to-5' direction and can unwind RNA-DNA heteroduplexes and DNA-DNA duplexes as well. In a gel retardation assay, the MBP-HGV/NS3 helicase bound to RNA, RNA/DNA, and DNA duplexes with 5' and 3' overhangs but not to blunt-ended RNA duplexes. We also found that the conserved motif VI was important for RNA binding. Further deletion mapping showed that the RNA binding domain was located between residues 1383 and 1395, QRRGRTGRGRSGR. Our data showed that the MBP-HCV/NS3 protein also contains the RNA binding domain in the similar domain.  相似文献   

10.
DnaB helicase is a ring-shaped hexamer that unwinds DNA at a replication fork. To understand how this protein interacts with DNA during unwinding, DnaB from Thermus aquaticus was incubated with chemically modified forked-duplex DNA substrates and the unwinding rates were measured. Unwinding was inhibited by modifications made to the 5'-tail, but not the 3'-tail, suggesting that the helicase interacts with the 5'-tail but not the 3'-tail during unwinding. Using oligonucleotides of mixed polarity, it was confirmed that DnaB translocates in the 5' to 3' direction as it unwinds DNA. A substrate was synthesized that contained two duplexes in tandem. Experiments involving various modifications of this tandem duplex demonstrated that when the 3'-tail is short, two stands of DNA pass through the central channel of DnaB with no resultant unwinding. Thus, the role of the 3'-tail in stimulating unwinding has been elucidated. The 3'-tail does not bind to DnaB during unwinding, but sterically determines whether one or two DNA strands pass through the central channel of DnaB. Furthermore, a new substrate for DnaB locomotion has been discovered. DnaB may actively translocate in the 5' to 3' direction along single-stranded DNA, even when a complementary strand is also present within the protein's central channel. This new mode of action may regulate DnaB activity by inhibiting unwinding at regions of DNA that are not forked. Furthermore, this new function for DnaB may coordinate abortion of leading and lagging strand replication if a nick is encountered on the leading strand.  相似文献   

11.
The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.  相似文献   

12.
The helicase of hepatitis C virus (HCV) unwinds nucleic acid using the energy of ATP hydrolysis. The ATPase cycle is believed to induce protein conformational changes to drive helicase translocation along the length of the nucleic acid. We have investigated the energetics of nucleic acid binding by HCV helicase to understand how the nucleotide ligation state of the helicase dictates the conformation of its nucleic acid binding site. Because most of the nucleotide ligation states of the helicase are transient due to rapid ATP hydrolysis, several compounds were analyzed to find an efficient unhydrolyzable ATP analog. We found that the beta-gamma methylene/amine analogs of ATP, ATPgammaS, or [AlF4]ADP were not effective in inhibiting the ATPase activity of HCV helicase. On the other hand, [BeF3]ADP was found to be a potent inhibitor of the ATPase activity, and it binds tightly to HCV helicase with a 1:1 stoichiometry. Equilibrium binding studies showed that HCV helicase binds single-stranded nucleic acid with a high affinity in the absence of ATP or in the presence of ADP. Upon binding to the ATP analog, a 100-fold reduction in affinity for ssDNA was observed. The reduction in affinity was also observed in duplex DNA with 3' single-stranded tail and in RNA but not in duplex DNA. The results of this study indicate that the nucleic acid binding site of HCV helicase is allosterically modulated by the ATPase reaction. The binding energy of ATP is used to bring HCV helicase out of a tightly bound state to facilitate translocation, whereas ATP hydrolysis and product release steps promote tight rebinding of the helicase to the nucleic acid. On the basis of these results we propose a Brownian motor model for unidirectional translocation of HCV helicase along the nucleic acid length.  相似文献   

13.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

14.
The direction of the DNA-unwinding reaction catalysed by Escherichia coli DNA helicase II was studied using gapped linear DNA molecules with short duplex ends as substrate. The results suggest that DNA helicase II unwinds with 3'-5' polarity relative to the single strand of the DNA partial duplex. At high enzyme DNA ratio the enzyme also unwinds the duplex connected to the 3' end of the single strand and, as further studies show, fully duplex linear DNA. The fraction of DNA unwound decreases as the length of the duplex substrate increases. The preference of DNA helicase II for a short duplex can obscure the fact that the typical substrate is duplex connected to the 5' end of a single strand.  相似文献   

15.
Hepatitis C virus (HCV) helicase, non-structural protein 3 (NS3), is proposed to aid in HCV genome replication and is considered a target for inhibition of HCV. In order to investigate the substrate requirements for nucleic acid unwinding by NS3, substrates were prepared by annealing a 30mer oligonucleotide to a 15mer. The resulting 15 bp duplex contained a single-stranded DNA overhang of 15 nt referred to as the bound strand. Other substrates were prepared in which the 15mer DNA was replaced by a strand of peptide nucleic acid (PNA). The PNA–DNA substrate was unwound by NS3, but the observed rate of strand separation was at least 25-fold slower than for the equivalent DNA–DNA substrate. Binding of NS3 to the PNA–DNA substrate was similar to the DNA–DNA substrate, due to the fact that NS3 initially binds to the single-stranded overhang, which was identical in each substrate. A PNA–RNA substrate was not unwound by NS3 under similar conditions. In contrast, morpholino–DNA and phosphorothioate–DNA substrates were utilized as efficiently by NS3 as DNA–DNA substrates. These results indicate that the PNA–DNA and PNA–RNA heteroduplexes adopt structures that are unfavorable for unwinding by NS3, suggesting that the unwinding activity of NS3 is sensitive to the structure of the duplex.  相似文献   

16.
Helicases catalytically unwind structured nucleic acids in a nucleoside-triphosphate-dependent and directionally specific manner, and are essential for virtually all aspects of nucleic acid metabolism. ATPase-driven helicases which translocate along nucleic acids play a role in damage recognition or unwinding of a DNA tract containing the lesion. Although classical biochemical experiments provided evidence that bulky covalent adducts inhibit DNA unwinding catalyzed by certain DNA helicases in a strand-specific manner (i.e., block to DNA unwinding restricted to adduct residence in the strand the helicase translocates), recent studies suggest more complex arrangements that may depend on the helicase under study, its assembly in a protein complex, and the type of structural DNA perturbation. Moreover, base and sugar phosphate backbone modifications exert effects on DNA helicases that suggest specialized tracking mechanisms. As a component of the replication stress response, the single-stranded DNA binding protein Replication Protein A (RPA) may serve to enable eukaryotic DNA helicases to overcome certain base lesions. Helicases play important roles in DNA damage signaling which also involve their partnership with RPA. In this review, we will discuss our current understanding of mechanistic and biological aspects of helicase action on damaged DNA.  相似文献   

17.
Unwinding of unnatural substrates by a DNA helicase   总被引:6,自引:0,他引:6  
Helicases separate double-stranded DNA into single-stranded DNA intermediates that are required during replication and recombination. These enzymes are believed to transduce free energy available from ATPase activity to unwind the duplex and translocate along the nucleic acid lattice. The nature of enzyme-substrate interactions between helicases and duplex DNA substrates has not been well-defined. Most helicases require a single-stranded DNA overhang adjacent to duplex DNA in order to initiate unwinding. The strand containing the overhang is referred to as the loading strand whereas the complementary strand is referred to as the displaced strand. We have investigated the interactions between a DNA helicase and the DNA substrate by replacing the displaced strand with a nucleic acid mimic, peptide nucleic acid (PNA). PNA is capable of forming duplex structures with DNA according to Watson-Crick base pairing rules, but contains a N-(2-aminoethyl)glycine backbone in place of the deoxyribose phosphates. The PNA-DNA hybrids had higher melting temperatures than their DNA-DNA counterparts. Dda helicase, from bacteriophage T4, was able to unwind the DNA-PNA substrates at similar rates as DNA-DNA substrates. The results indicate that the rate-limiting step for unwinding is relatively insensitive to the chemical nature of the displaced strand and the thermal stability of oligonucleotide substrates.  相似文献   

18.
X Li  C K Tan  A G So  K M Downey 《Biochemistry》1992,31(13):3507-3513
A DNA helicase (delta helicase) which partially copurifies with DNA polymerase delta has been highly purified from fetal calf thymus. delta helicase differs in physical and enzymatic properties from other eukaryotic DNA helicases described thus far. The enzyme has an apparent mass of 57 kDa by gel filtration and is associated with polypeptides of 56 and 52 kDa by SDS-polyacrylamide gel electrophoresis. Photo-cross-linking of the purified enzyme with [alpha-32P]ATP resulted in labeling of a polypeptide of approximately 58 kDa, suggesting that the active site is present on the larger polypeptide. Unwinding of a partial duplex requires a nucleoside triphosphate which can be either ATP or dATP but not a nonhydrolyzable analogue of ATP. Other ribo- and deoxyribonucleoside triphosphates have little or no activity as cofactors. delta helicase also has DNA-dependent ATPase activity which has a relatively low Km for ATP (40 microM). delta helicase binds to single-stranded DNA but has little or no affinity for double-stranded DNA or single-stranded RNA. Similar to replicative DNA helicases from prokaryotes and the herpes simplex virus type 1 helicase-primase, delta helicase translocates in the 5'-3' direction along the strand to which it is bound and preferentially unwinds DNA substrates with a forklike structure.  相似文献   

19.
Non-structural protein 3 (NS3) helicase from hepatitis C virus is an enzyme that unwinds and translocates along nucleic acids with an ATP-dependent mechanism and has a key role in the replication of the viral RNA. An inchworm-like mechanism for translocation has been proposed based on crystal structures and single molecule experiments. We here perform atomistic molecular dynamics in explicit solvent on the microsecond time scale of the available experimental structures. We also construct and simulate putative intermediates for the translocation process, and we perform non-equilibrium targeted simulations to estimate their relative stability. For each of the simulated structures we carefully characterize the available conformational space, the ligand binding pocket, and the RNA binding cleft. The analysis of the hydrogen bond network and of the non-equilibrium trajectories indicates an ATP-dependent stabilization of one of the protein conformers. Additionally, enthalpy calculations suggest that entropic effects might be crucial for the stabilization of the experimentally observed structures.  相似文献   

20.
NPH-II is a prototypical member of the DExH/D subgroup of superfamily II helicases. It exhibits robust RNA helicase activity, and a detailed kinetic framework for unwinding has been established. However, like most SF2 helicases, there is little known about its mode of substrate recognition and its ability to differentiate between RNA and DNA substrates. Here, we employ a series of chimeric RNA–DNA substrates to explore the molecular determinants for NPH-II specificity on RNA and to determine if there are conditions under which DNA is a substrate. We show that efficient RNA helicase activity depends exclusively on ribose moieties in the loading strand and in a specific section of the 3′-overhang. However, we also document the presence of trace activity on DNA polymers, showing that DNA can be unwound under extremely permissive conditions that favor electrostatic binding. Thus, while polymer-specific SF2 helicases control substrate recognition through specific interactions with the loading strand, alternative specificities can arise under appropriate reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号