首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.  相似文献   

2.
This study investigates the role of magnesium ions in coupling ATP hydrolysis to the nucleic acid unwinding catalyzed by the NS3 protein encoded by the hepatitis C virus (HCV). Analyses of steady-state ATP hydrolysis rates at various RNA and magnesium concentrations were used to determine values for the 15 dissociation constants describing the formation of a productive enzyme-metal-ATP-RNA complex and the four rate constants describing hydrolysis of ATP by the possible enzyme-ATP complexes. These values coupled with direct binding studies, specificity studies and analyses of site-directed mutants reveal only one ATP binding site on HCV helicase centered on the catalytic base Glu291. An adjacent residue, Asp290, binds a magnesium ion that forms a bridge to ATP, reorienting the nucleotide in the active site. RNA stimulates hydrolysis while decreasing the affinity of the enzyme for ATP, magnesium, and MgATP. The binding scheme described here explains the unusual regulation of the enzyme by ATP that has been reported previously. Binding of either free magnesium or free ATP to HCV helicase competes with MgATP, the true fuel for helicase movements, and leads to slower hydrolysis and nucleic acid unwinding.  相似文献   

3.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

4.
Mitochondrial ATPase from rat liver mitochondria contains multiple nucleotide binding sites. At low concentrations ADP binds with high affinity (1 mole/mole ATPase, KD = 1–2 μM). At high concentrations, ADP inhibits ATP hydrolysis presumably by competing with ATP for the active site (KI = 240–300 μM). As isolated, mitochondrial ATPase contains between 0.6 and 2.5 moles ATP/mole ATPase. This “tightly bound” ATP can be removed by repeated precipitations with ammonium sulfate without altering hydrolytic activity of the enzyme. However, the ATP-depleted enzyme must be redissolved in high concentrations of phosphate to retain activity. AMP-PNP (adenylyl imidodiphosphate) replaces tightly bound ATP removed from the enzyme and inhibits ATP hydrolysis. AMP-PNP has little effect on high affinity binding of ADP. Kinetic studies of ATP hydrolysis reveal hyperbolic velocity vs. ATP plots, provided assays are done in bicarbonate buffer or buffers containing high concentrations of phosphate. Taken together, these studies indicate that sites on the enzyme not directly associated with ATP hydrolysis bind ATP or ADP, and that in the absence of bound nucleotide, Pi can maintain the active form of the enzyme.  相似文献   

5.
Bi X  Ren J  Goss DJ 《Biochemistry》2000,39(19):5758-5765
It has been proposed that, during translational initiation, structures in the 5' untranslated region of mRNA are unwound. eIF4A, a member of the DEAD box family of proteins (those that contain a DEAD amino acid sequence), separately or in conjunction with other eukaryotic initiation factors, utilizes the energy from ATP hydrolysis to unwind these structures. As a step in defining the mechanism of helicase activity in the wheat germ protein synthesis system, we have utilized direct fluorescence measurements, ATPase assays, and helicase assays. The RNA duplex unwinding activity of wheat germ eIF4A is similar to other mammalian systems; however, eIF4F or eIFiso4F is required, probably because of the low binding affinity of wheat germ eIF4A for mRNA. Direct ATP binding measurements showed that eIF4A had a higher binding affinity for ADP than ATP, resulting in a limited hydrolysis and procession along the RNA in the helicase assay. The addition of eIF4B resulted in a change in binding affinity for ATP, increasing it almost 10-fold while the ADP binding affinity was approximately the same. The data presented in this paper suggest that eIF4F or eIFiso4F acts to position the eIF4A and stabilize the interaction with mRNA. ATP produces a conformational change which allows a limited unwinding of the RNA duplex. The binding of eIF4B either prior to or after hydrolysis allows for increased affinity for ATP and for the cycle of conformational changes to proceed, resulting in further unwinding and processive movement along the mRNA.  相似文献   

6.
The molecular basis of the low-pH activation of the helicase encoded by the hepatitis C virus (HCV) was examined using either a full-length NS3 protein/NS4A cofactor complex or truncated NS3 proteins lacking the protease domain, which were isolated from three different viral genotypes. All proteins unwound RNA and DNA best at pH 6.5, which demonstrate that conserved NS3 helicase domain amino acids are responsible for low-pH enzyme activation. DNA unwinding was less sensitive to pH changes than RNA unwinding. Both the turnover rate of ATP hydrolysis and the Km of ATP were similar between pH 6 and 10, but the concentration of nucleic acid needed to stimulate ATP hydrolysis decreased almost 50-fold when the pH was lowered from 7.5 to 6.5. In direct-binding experiments, HCV helicase bound DNA weakly at high pH only in the presence of the non-hydrolyzable ATP analog, ADP(BeF3). These data suggest that a low-pH environment might be required for efficient HCV RNA translation or replication, and support a model in which an acidic residue rotates toward the RNA backbone upon ATP binding repelling nucleic acid from the binding cleft.  相似文献   

7.
UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke   总被引:11,自引:0,他引:11  
Lee JY  Yang W 《Cell》2006,127(7):1349-1360
Helicases use the energy derived from nucleoside triphosphate hydrolysis to unwind double helices in essentially every metabolic pathway involving nucleic acids. Earlier crystal structures have suggested that DNA helicases translocate along a single-stranded DNA in an inchworm fashion. We report here a series of crystal structures of the UvrD helicase complexed with DNA and ATP hydrolysis intermediates. These structures reveal that ATP binding alone leads to unwinding of 1 base pair by directional rotation and translation of the DNA duplex, and ADP and Pi release leads to translocation of the developing single strand. Thus DNA unwinding is achieved by a two-part power stroke in a combined wrench-and-inchworm mechanism. The rotational angle and translational distance of DNA define the unwinding step to be 1 base pair per ATP hydrolyzed. Finally, a gateway for ssDNA translocation and an alternative strand-displacement mode may explain the varying step sizes reported previously.  相似文献   

8.
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.  相似文献   

9.
The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.  相似文献   

10.
SecA, the motor subunit of bacterial polypeptide translocase, is an RNA helicase. SecA comprises a dimerization C-terminal domain fused to an ATPase N-terminal domain containing conserved DEAD helicase motifs. We show that the N-terminal domain is organized like the motor core of DEAD proteins, encompassing two subdomains, NBD1 and IRA2. NBD1, a rigid nucleotide-binding domain, contains the minimal ATPase catalytic machinery. IRA2 binds to NBD1 and acts as an intramolecular regulator of ATP hydrolysis by controlling ADP release and optimal ATP catalysis at NBD1. IRA2 is flexible and can undergo changes in its alpha-helical content. The C-terminal domain associates with NBD1 and IRA2 and restricts IRA2 activator function. Thus, cytoplasmic SecA is maintained in the thermally stabilized ADP-bound state and unnecessary ATP hydrolysis cycles are prevented. Two DEAD family motifs in IRA2 are essential for IRA2-NBD1 binding, optimal nucleotide turnover and polypeptide translocation. We propose that translocation ligands alleviate C-terminal domain suppression, allowing IRA2 to stimulate nucleotide turnover at NBD1. DEAD motors may employ similar mechanisms to translocate different enzymes along chemically unrelated biopolymers.  相似文献   

11.
Helicases contain conserved motifs involved in ATP/magnesium/nucleic acid binding and in the mechanisms coupling nucleotide hydrolysis to duplex unwinding. None of these motifs are located at the adenine-binding pocket of the protein. We show here that the superfamily I helicase, helicase IV from Escherichia coli, utilizes a conserved glutamine and conserved aromatic residue to interact with ATP. Other superfamily I helicases such as, UvrD/Rep/PcrA also possess these residues but in addition they interact with adenine via a conserved arginine, which is replaced by a serine in helicase IV. Mutation of this serine residue in helicase IV into histidine or methionine leads to proteins with unaffected ATPase and DNA-binding activities but with low helicase activity. This suggests that residues located at the adenine-binding pocket, in addition to be involved in ATP-binding, are important for efficient coupling between ATP hydrolysis and DNA unwinding.  相似文献   

12.
The NS3 ATPase/helicase was isolated and characterized from three different infectious clones of hepatitis C virus (HCV). One helicase was from a genotype that normally responds to therapy (Hel-2a), and the other two were from more resistant genotypes, 1a (Hel-1a) and 1b (Hel-1b). Although the differences among these helicases are generally minor, all three enzymes have distinct properties. Hel-1a is less selective for nucleoside triphosphates, Hel-1b hydrolyzes nucleoside triphosphates less rapidly, and Hel-2a unwinds DNA more rapidly and binds DNA more tightly than the other two enzymes. Unlike related proteins, different nucleic acid sequences stimulate ATP hydrolysis by HCV helicase at different maximum rates and with different apparent efficiencies. This nucleic acid stimulation profile is conserved among the enzymes, but it does not result entirely from differential DNA-binding affinities. Although the amino acid sequences of the three proteins differ by up to 15%, one variant amino acid that is critical for helicase action was identified. NS3 residue 450 is a threonine in Hel-1a and Hel-1b and is an isoleucine in Hel-2a. A mutant Hel-1a with an isoleucine substituted for threonine 450 unwinds DNA more rapidly and binds DNA more tightly than the parent protein.  相似文献   

13.
Helicase from hepatitis C virus,energetics of DNA binding   总被引:9,自引:0,他引:9  
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The global analysis of the binding data by a combinatorial approach was done using MATLAB. NS3h interactions with single-stranded DNA (ssDNA) are 300-1000-fold tighter relative to duplex DNA. The NS3h protein binds to ssDNA less than 15 nt in length with a stoichiometry of one protein per DNA. The minimal ssDNA binding site of NS3h helicase was determined to be 8 nucleotides with the microscopic K(d) of 2-4 nm or an observed free energy of -50 kJ/mol. These NS3h-DNA interactions are highly sensitive to salt, and the K(d) increases 4 times when the NaCl concentration is doubled. Multiple HCV helicase proteins bind to ssDNA >15 nucleotides in length, with an apparent occluded site of 8-11 nucleotides. The DNA binding data indicate that the interactions of multiple NS3h protein molecules with long ssDNA are both noncooperative and sequence-independent. We discuss the DNA binding properties of HCV helicase in relation to other superfamily 1 and 2 helicases. These studies provide the basis to investigate the DNA binding interactions with the unwinding substrate and their modulation by the ATPase activity of HCV helicase.  相似文献   

14.
The Escherichia coli primosome is a mobile multiprotein DNA replication-priming apparatus that assembles at a specific site (termed a primosome assembly site (PAS] on single-stranded DNA-binding protein-coated single-stranded DNA. The PRI A protein (factor Y, protein n') is a PAS sequence-specific (d)ATPase as well as a DNA helicase and is believed to direct the assembly of the primosome at a PAS. In this report, the PRI A DNA helicase reaction is dissected in vitro, by use of a strand displacement assay, into three steps with distinct ATP requirements. First, the PRI A protein gains entry to the DNA via an ATP-independent, PAS sequence-specific binding event. Second, the PRI A protein translocates along the single-stranded DNA in the 3'----5' direction at a maximal rate of 90 nucleotides/s. DNA translocation requires ATP hydrolysis. The ATP concentration required to support half of the maximal translocation rate is 100 microM, which is identical to the Km for ATP of the PRI A protein DNA-dependent ATPase activity. Finally, the PRI A protein unwinds duplex DNA. The ATP concentration required for duplex DNA unwinding depends upon the length of the duplex region to be unwound. Displacement of a 24-nucleotide long oligomer required no more ATP than that required for the translocation of PRI A protein along single-stranded DNA, whereas displacement of a 390-nucleotide long DNA fragment required a 10-fold higher concentration of ATP than that required for oligomer displacement.  相似文献   

15.
mRNA degradation is an important control point in the regulation of gene expression and has been shown to be linked to the process of translation. One clear example of this linkage is the observation that nonsense mutations in a gene can accelerate the decay of the corresponding mRNA. In the yeast Saccharomyces cerevisiae, the product of the UPF1 gene, harboring zinc finger, NTP hydrolysis, and helicase motifs, was shown to be a trans-acting factor in this decay pathway. A UPF1 gene disruption results in stabilization of nonsense-containing mRNAs and leads to a nonsense suppression phenotype. As a first step toward understanding the molecular and biochemical mechanism of nonsense-mediated mRNA decay, we have purified Upf1p from a yeast extract and characterized its nucleic acid-dependent NTPase activity, helicase activity, and nucleic acid binding properties. The results presented in this paper demonstrate that Upf1p contains both RNA- and DNA-dependent ATPase activities and RNA and DNA helicase activities. In the absence of ATP, Upf1p binds to single-stranded RNA or DNA, whereas hydrolysis of ATP facilitates its release from single-stranded nucleic acid. Based on these results, the role of Upf1p's biochemical activities in mRNA decay and translation are discussed.  相似文献   

16.
DEAD-box proteins are ATPase enzymes that destabilize and unwind duplex RNA. Quantitative knowledge of the ATPase cycle parameters is critical for developing models of helicase activity. However, limited information regarding the rate and equilibrium constants defining the ATPase cycle of RNA helicases is available, including the distribution of populated biochemical intermediates, the catalytic step(s) that limits the enzymatic reaction cycle, and how ATP utilization and RNA interactions are linked. We present a quantitative kinetic and equilibrium characterization of the ribosomal RNA (rRNA)-activated ATPase cycle mechanism of DbpA, a DEAD-box rRNA helicase implicated in ribosome biogenesis. rRNA activates the ATPase activity of DbpA by promoting a conformational change after ATP binding that is associated with hydrolysis. Chemical cleavage of bound ATP is reversible and occurs via a γ-phosphate attack mechanism. ADP-Pi and RNA binding display strong thermodynamic coupling, which causes DbpA-ADP-Pi to bind rRNA with > 10-fold higher affinity than with bound ATP, ADP or in the absence of nucleotide. The rRNA-activated steady-state ATPase cycle of DbpA is limited both by ATP hydrolysis and by Pi release, which occur with comparable rates. Consequently, the predominantly populated biochemical states during steady-state cycling are the ATP- and ADP-Pi-bound intermediates. Thermodynamic linkage analysis of the ATPase cycle transitions favors a model in which rRNA duplex destabilization is linked to strong rRNA and nucleotide binding. The presented analysis of the DbpA ATPase cycle reaction mechanism provides a rigorous kinetic and thermodynamic foundation for developing testable hypotheses regarding the functions and molecular mechanisms of DEAD-box helicases.  相似文献   

17.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

18.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

19.
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state Pi release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.  相似文献   

20.
Primosome assembly protein PriA functions in the assembly of the replisome at forked DNA structures. Whereas its N-terminal DNA binding domain (DBD) binds independently to DNA, the affinity of DBD protein for forked structures is relatively weak. Although the PriA helicase domain (HD) is required for high affinity fork binding, HD protein had very low affinity for DNA. It had only low levels of ATPase activity, and it hydrolyzed ATP when DNA was absent whereas PriA did not. HD catalyzed unwinding of a minimal substrate composed of a duplex with a 3' single-stranded tail. Single-strand binding protein (SSB) bound to the tail of this substrate inhibited this reaction by full-length PriA but enhanced the reaction by HD. SSB stabilized binding of PriA but not of DBD or HD to duplexes with a 5' or 3' single-stranded tail. On forked substrates SSB enhanced helicase action on the lagging-strand arm by PriA but not by HD. The results indicate that synergy of the DBD and HD allows stable binding at the interface between duplex and single-stranded DNA bound by SSB. This mode of binding may be analogous to fork binding, which orients the helicase to act on the lagging-strand side of the fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号