首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies. Despite their fundamental role in cancer pathogenesis, the cellular origin of CSCs remains highly controversial. The aim of this study was to examine whether heterogeneous cancer cells can acquire stem cell-like properties in response to chemotherapy. We demonstrate that carboplatin can induce the self-renewal (spherogenesis) and pluripotency (Sox2 and Oct3/4 expression) of hepatocellular carcinoma (HCC) cells grown under stem cell culture conditions. Moreover, we show that non-CSC cells, obtained by side population flow cytometric sorting using Hoechst 33342, can acquire stem-like properties after exposure to carboplatin. Finally, we show that knockdown of Sox2 and Oct3/4 gene expression in HCC cells can reduce carboplatin-mediated increases in sphere formation and increase cellular sensitivity to chemotherapy. Taken together, our data indicate that bulk cancer cells may be an important source of CSCs during tumor development, and that targeting Sox2 and/or Oct3/4 may be a promising approach for targeting CSCs in clinical cancer treatment.  相似文献   

2.
Angiogenesis is generally involved in tumor growth and metastasis. Cancer stem cells (CSCs) are considered to facilitate the angiogenesis. Therefore, CSCs could be the effective targets to stop angiogenesis. Recently, our group successfully generated CSC models from induced pluripotent stem cells (iPSCs) in the presence of conditioned medium derived from cancer derived cells. These novel model CSCs has been characterized by highly tumorigenic, angiogenic and metastatic potentials in vivo. The angiogenic potential of CSCs has been explained by the expression of both angiogenic factors and their receptors implying the angiogenesis in autocrine manner. In this protocol we optimized the method to evaluate tumor angiogenesis with the CSC model, which was described effective to assess sorafenib as an antiangiogenic drug, on chick chorioallantoic membrane (CAM) assay. Our results demonstrate that CSCs developed from iPSCs and CAM assay are a robust and cost-effective tool to evaluate tumor angiogenesis with CSCs. Collectively, CSCs in CAM assay could serve as a very useful model for the screening of potential therapeutic agents targeting tumor angiogenesis.  相似文献   

3.
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.  相似文献   

4.
Recent experimental evidence indicates that many solid cancers have a hierarchical organization structure with a subpopulation of cancer stem cells (CSCs). The ability to identify CSCs prospectively now allows for testing the responses of CSCs to treatment modalities like radiation therapy. Initial studies have found CSCs in glioma and breast cancer relatively resistant to ionizing radiation and possible mechanisms behind this resistance have been explored. This review summarizes the landmark publications in this young field with an emphasis on the radiation responses of CSCs. The existence of CSCs in solid cancers place restrictions on the interpretation of many radiobiological observations, while explaining others. The fact that these cells may be a relatively quiescent subpopulation that are metabolically distinct from the other cells in the tumor has implications for both imaging and therapy of cancer. This is particularly true for biological targeting of cancer for enhanced radiotherapeutic benefit, which must consider whether the unique properties of this subpopulation allow it to avoid such therapies. J. Cell. Biochem. 108: 339–342, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell(CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryoniclike stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.  相似文献   

6.
胃癌是仅次于肺癌的第二大致死率癌症,尽管近年来对胃癌研究有了很大进展,但由于缺乏良好的动物模型,对胃癌的发病机理仍然不是很清楚.近年的研究表明,肿瘤组织不是由均一细胞构成的,其中存在一些少量细胞可以自我更新并可以分化为肿瘤组织的其他细胞,这类细胞具有类似成体组织干细胞(tissue stem cells)的特性称之为肿瘤干细胞(cancer stem cells).肿瘤干细胞被认为在肿瘤的生长、转移、复发中发挥着重要作用.有证据表明在胃癌组织中存在胃癌干细胞(gastric cancer stem cells),但是对胃癌干细胞的来源仍然不是十分明确.对肿瘤干细胞的研究有助于癌症的治疗,改变目前药物针对所有癌细胞的治疗策略.  相似文献   

7.
Cancer stem cells (CSCs), a group of tumour cells with stem cell characteristics, have the ability of self-renewal, multi-lineage differentiation and tumour formation. Since CSCs are resistant to conventional radiotherapy and chemotherapy, their existence may be one of the root causes of cancer treatment failure and tumour progression. The elimination of CSCs may be effective for eventual tumour eradication. Because of the good therapeutic effects without major histocompatibility complex (MHC) restriction and the unique characteristics of CSCs, chimeric antigen receptor T-cell (CAR-T) therapy is expected to be an important method to eliminate CSCs. In this review, we have discussed the feasibility of CSCs-targeted CAR-T therapy for cancer treatment, summarized current research and clinical trials of targeting CSCs with CAR-T cells and forecasted the challenges and future direction from the perspectives of toxicity, persistence and potency, trafficking, infiltration, immunosuppressive tumour microenvironment, and tumour heterogeneity.  相似文献   

8.
Head and neck squamous cell cancer(HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells(CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.  相似文献   

9.
最近的一项研究报导,采用流式细胞仪分选技术从人胃癌细胞株中分离出CD44胃癌干细胞. 20~30×103个CD44+细胞入NOD/SCID 鼠腹部皮下和胃浆膜下能形成胃癌移植瘤, 100×103个CD44的细胞入NOD/SCID 鼠体内不形成肿瘤.采用无血清、无粘附间质的干细胞体外培养方法,发现CD44的细胞能形成肿瘤微球体,具有自我更新能力,而CD44的细胞则不形成球形克隆.上述的实验结果说明,在人胃癌细胞株中存在胃癌肿瘤干细胞.据此可以相信,胃癌干细胞是胃癌细胞中具有自我更新及分化潜能的一小群细胞,不能被目前的化疗、放疗等抗癌治疗措施所杀灭,是胃癌术后复发、肿瘤进展扩散转移的根源.胃癌干细胞可能来源于骨髓干细胞.随着对胃癌肿瘤干细胞生物学研究的深入,必将为胃癌的临床诊断和治疗提供新的策略.  相似文献   

10.
11.
Cancer stem cells (CSCs) represent a population of cancer cells that possess unique self-renewal and differentiation characteristics required for tumorigenesis and are resistant to chemotherapy-induced apoptosis. Lung CSCs can be enriched by several markers including drug-resistant side population (SP), CD133pos and ALDHhigh. Using human non-small cell lung adenocarcinoma cell lines and patient-derived primary tumor cells, we demonstrate that SP cells represent a subpopulation distinct from other cancer stem/progenitor cell (CS/PC) populations marked by CD133pos or ALDHhigh. The non-CS/PCs and CS/PCs of each subpopulation are interconvertible. Epithelial-mesenchymal transition (EMT) promotes the formation of CD133pos and ALDHhigh CS/PC subpopulations while suppressing the SP CS/PC subpopulation. Rac1 GTPase activity is significantly increased in cells that have undergone EMT, and targeting Rac1 is effective in inhibiting the dynamic conversion of non-CS/PCs to CS/PCs, as well as the CS/PC activity. These results imply that various subpopulations of CS/PCs and non-CS/PCs may achieve a stochastic equilibrium in a defined microenvironment, and eliminating multiple subpopulations of CS/PCs and effectively blocking non-CS/PC to CS/PC transition, by an approach such as targeting Rac1, can be a more effective therapy.  相似文献   

12.
13.
Normal cells mainly rely on oxidative phosphorylation as an effective energy source in the presence of oxygen. In contrast, most cancer cells use less efficient glycolysis to produce ATP and essential biomolecules. Cancer cells gain the characteristics of metabolic adaptation by reprogramming their metabolic mechanisms to meet the needs of rapid tumor growth. A subset of cancer cells with stem characteristics and the ability to regenerate exist throughout the tumor and are therefore called cancer stem cells (CSCs). New evidence indicates that CSCs have different metabolic phenotypes compared with differentiated cancer cells. CSCs can dynamically transform their metabolic state to favor glycolysis or oxidative metabolism. The mechanism of the metabolic plasticity of CSCs has not been fully elucidated, and existing evidence indicates that the metabolic phenotype of cancer cells is closely related to the tumor microenvironment. Targeting CSC metabolism may provide new and effective methods for the treatment of tumors. In this review, we summarize the metabolic characteristics of cancer cells and CSCs and the mechanisms of the metabolic interplay between the tumor microenvironment and CSCs, and discuss the clinical implications of targeting CSC metabolism.  相似文献   

14.
Breast cancer, like many other cancers, is believed to be driven by a population of cells that display stem cell properties. Recent studies suggest that cancer stem cells (CSCs) are essential for tumor progression, and tumor relapse is thought to be caused by the presence of these cells. CSC-targeted therapies have also been proposed to overcome therapeutic resistance in breast cancer after the traditional therapies. Additionally, the metabolic properties of cancer cells differ markedly from those of normal cells. The efficacy of metabolic targeted therapy has been shown to enhance anti-cancer treatment or overcome therapeutic resistance of breast cancer cells. Metabolic targeting of breast CSCs (BCSCs) may be a very effective strategy for anti-cancer treatment of breast cancer cells. Thus, in this review, we focus on discussing the studies involving metabolism and targeted therapy in BCSCs.  相似文献   

15.
16.
Increasing evidence has confirmed the existence of cancer stem cells (CSCs) in both hematological malignancies and solid tumors. However, the origin of CSCs is still uncertain, and few agents have been capable of eliminating CSCs till now. The aim of this study was to investigate whether bulk pancreatic cancer cells could convert into CSCs under certain conditions and explore whether metformin and curcumin can kill pancreatic CSCs. Aspc1, Bxpc3 and Panc1 pancreatic cancer cells were cultured in stem cell culture medium (serum-free Dulbecco's modified Eagle medium/Nutrient Mixture F-12 containing basic fibroblast growth factor, epidermal growth factor, B27 and insulin) for 5 days and it was found that all the pancreatic cancer cells aggregated into spheres and expressed pancreatic cancer stem cell surface markers. Then characteristics of Panc1 sphere cells were analyzed and cytotoxicity assays were performed. The results show that Panc1 sphere cells exhibited CSC characteristics and were more resistant to conventional chemotherapy and more sensitive to metformin and curcumin than their parent cells. These findings suggested that bulk pancreatic cancer cells could acquire CSC characteristics under certain conditions, which may support the “yin-yang” model of CSCs (interconversion between bulk cancer cells and CSCs). These results also showed that metformin and curcumin could be candidate drugs for targeting pancreatic CSCs.  相似文献   

17.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.  相似文献   

18.
Cancer stem cells (CSCs) are a specific subset of cancer cells that sustain tumor growth and dissemination. They might represent a significant treatment target to reduce malignant progression and prevent tumor recurrence. In solid tumors, several hierarchically organized CSC clones coexist, even within a single tumor. Among them, CSCs displaying an embryonic stem cell ‘stemness'' signature, based on the expression of Oct-4, Nanog and Sox2, are present in distinct high-grade tumor types associated with poor prognosis. We previously designed a model to isolate pure populations of these CSCs from distinct solid tumors and used it to screen for molecules showing selective toxicity for this type of CSC. Here we show that human immunodeficiency virus (HIV)-protease inhibitors (HIV-PIs) specifically target CSCs expressing an embryonic signature derived from tumors with distinct origins. They reduced proliferation in a dose-dependent manner with a higher specificity as compared with the total population of cancer cells and/or healthy stem cells, and they were efficient in inducing cell death. Lopinavir was the most effective HIV-PI among those tested. It reduced self-renewal and induced apoptosis of CSCs, subsequently impairing in vivo CSC-induced allograft formation. Two key pharmacophores in the LPV structure were also identified. They are responsible for the specificity of CSC targeting and also for the overall antitumoral activity. These results contribute to the identification of molecules presenting selective toxicity for CSCs expressing an embryonic stemness signature. This paves the way to promising therapeutic opportunities for patients suffering from solid cancer tumors of poor prognosis.  相似文献   

19.
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histonemodifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).  相似文献   

20.
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号