首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of intracellular Ca2+ is essential for cardiomyocyte function, and alterations in proteins that regulate Ca2+ influx have dire consequences in the diseased heart. Low voltage-activated, T-type Ca2+ channels are one pathway of Ca2+ entry that is regulated according to developmental stage and in pathological conditions in the adult heart. Cardiac T-type channels consist of two main types, Cav3.1 (α1G) and Cav3.2 (α1H), and both can be induced in the myocardium in disease and injury but still, relatively little is known about mechanisms for their regulation and their respective functions. This article integrates previous data establishing regulation of T-type Ca2+ channels in animal models of cardiac disease, with recent data that begin to address the functional consequences of cardiac Cav3.1 and Cav3.2 Ca2+ channel expression in the pathological setting. The putative association of T-type Ca2+ channels with Ca2+ dependent signaling pathways in the context of cardiac hypertrophy is also discussed.  相似文献   

2.
Y Li  F Wang  X Zhang  Z Qi  M Tang  C Szeto  Y Li  H Zhang  X Chen 《PloS one》2012,7(7):e39965
The T-type Ca(2+) channel (TTCC) plays important roles in cellular excitability and Ca(2+) regulation. In the heart, TTCC is found in the sinoatrial nodal (SAN) and conduction cells. Cav3.1 encodes one of the three types of TTCCs. To date, there is no report regarding the regulation of Cav3.1 by β-adrenergic agonists, which is the topic of this study. Ventricular myocytes (VMs) from Cav3.1 double transgenic (TG) mice and SAN cells from wild type, Cav3.1 knockout, or Cav3.2 knockout mice were used to study β-adrenergic regulation of overexpressed or native Cav3.1-mediated T-type Ca(2+) current (I(Ca-T(3.1))). I(Ca-T(3.1)) was not found in control VMs but was robust in all examined TG-VMs. A β-adrenergic agonist (isoproterenol, ISO) and a cyclic AMP analog (dibutyryl-cAMP) significantly increased I(Ca-T(3.1)) as well as I(Ca-L) in TG-VMs at both physiological and room temperatures. The ISO effect on I(Ca-L) and I(Ca-T) in TG myocytes was blocked by H89, a PKA inhibitor. I(Ca-T) was detected in control wildtype SAN cells but not in Cav3.1 knockout SAN cells, indicating the identity of I(Ca-T) in normal SAN cells is mediated by Cav3.1. Real-time PCR confirmed the presence of Cav3.1 mRNA but not mRNAs of Cav3.2 and Cav3.3 in the SAN. I(Ca-T) in SAN cells from wild type or Cav3.2 knockout mice was significantly increased by ISO, suggesting native Cav3.1 channels can be upregulated by the β-adrenergic (β-AR) system. In conclusion, β-adrenergic stimulation increases I(Ca-T(3.1)) in cardiomyocytes(,) which is mediated by the cAMP/PKA pathway. The upregulation of I(Ca-T(3.1)) by the β-adrenergic system could play important roles in cellular functions involving Cav3.1.  相似文献   

3.
T-type calcium channels play critical roles in controlling neuronal excitability, including the generation of complex spiking patterns and the modulation of synaptic plasticity, although the mechanisms and extent to which T-type Ca(2+) channels are modulated by G-protein-coupled receptors (GPCRs) remain largely unexplored. To examine specific interactions between T-type Ca(2+) channel subtypes and muscarinic acetylcholine receptors (mAChRS), the Cav3.1 (alpha(1G)), Cav3.2 (alpha(1H)), and Cav3.3 (alpha) T-type Ca(2+)(1I)channels were co-expressed with the M1 Galpha(q/11)-coupled mAChR. Perforated patch recordings demonstrate that activation of M1 receptors has a strong inhibitory effect on Cav3.3 T-type Ca(2+) currents but either no effect or a moderate stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. This differential modulation was observed for both rat and human T-type Ca(2+) channel variants. The inhibition of Cav3.3 channels by M1 receptors is reversible, use-independent, and associated with a concomitant increase in inactivation kinetics. Loss-of-function experiments with genetically encoded antagonists of Galpha and Gbetagamma proteins and gain-of-function experiments with genetically encoded Galpha subtypes indicate that M1 receptor-mediated inhibition of Cav3.3 occurs through Galpha(q/11). This is supported by experiments showing that activation of the M3 and M5 Galpha(q/11)-coupled mAChRs also causes inhibition of Cav3.3 currents, although Galpha(i)-coupled mAChRs (M2 and M4) have no effect. Examining Cav3.1-Cav3.3 chimeric channels demonstrates that two distinct regions of the Cav3.3 channel are necessary and sufficient for complete M1 receptor-mediated channel inhibition and represent novel sites not previously implicated in T-type channel modulation.  相似文献   

4.
5.
Voltage-gated T-type Ca(2+) channel Ca(v)3.2 (α(1H)) subunit, responsible for T-type Ca(2+) current, is expressed in different tissues and participates in Ca(2+) entry, hormonal secretion, pacemaker activity, and arrhythmia. The precise subcellular localization and regulation of Ca(v)3.2 channels in native cells is unknown. Caveolae containing scaffolding protein caveolin-3 (Cav-3) localize many ion channels, signaling proteins and provide temporal and spatial regulation of intracellular Ca(2+) in different cells. We examined the localization and regulation of the Ca(v)3.2 channels in cardiomyocytes. Immunogold labeling and electron microscopy analysis demonstrated co-localization of the Ca(v)3.2 channel and Cav-3 relative to caveolae in ventricular myocytes. Co-immunoprecipitation from neonatal ventricular myocytes or transiently transfected HEK293 cells demonstrated that Ca(v)3.1 and Ca(v)3.2 channels co-immunoprecipitate with Cav-3. GST pulldown analysis confirmed that the N terminus region of Cav-3 closely interacts with Ca(v)3.2 channels. Whole cell patch clamp analysis demonstrated that co-expression of Cav-3 significantly decreased the peak Ca(v)3.2 current density in HEK293 cells, whereas co-expression of Cav-3 did not alter peak Ca(v)3.1 current density. In neonatal mouse ventricular myocytes, overexpression of Cav-3 inhibited the peak T-type calcium current (I(Ca,T)) and adenovirus (AdCa(v)3.2)-mediated increase in peak Ca(v)3.2 current, but did not affect the L-type current. The protein kinase A-dependent stimulation of I(Ca,T) by 8-Br-cAMP (membrane permeable cAMP analog) was abolished by siRNA directed against Cav-3. Our findings on functional modulation of the Ca(v)3.2 channels by Cav-3 is important for understanding the compartmentalized regulation of Ca(2+) signaling during normal and pathological processes.  相似文献   

6.
Voltage-dependent calcium channels (Cav) of the T-type family (Cav3.1, Cav3.2, and Cav3.3) are activated by low threshold membrane depolarization and contribute greatly to neuronal network excitability. Enhanced T-type channel activity, especially Cav3.2, contributes to disease states, including absence epilepsy. Interestingly, the intracellular loop connecting domains I and II (I-II loop) of Cav3.2 channels is implicated in the control of both surface expression and channel gating, indicating that this I-II loop plays an important regulatory role in T-type current. Here we describe that co-expression of this I-II loop or its proximal region (Δ1-Cav3.2; Ser423–Pro542) together with recombinant full-length Cav3.2 channel inhibited T-type current without affecting channel expression and membrane incorporation. Similar T-type current inhibition was obtained in NG 108-15 neuroblastoma cells that constitutively express Cav3.2 channels. Of interest, Δ1-Cav3.2 inhibited both Cav3.2 and Cav3.1 but not Cav3.3 currents. Efficacy of Δ1-Cav3.2 to inhibit native T-type channels was assessed in thalamic neurons using viral transduction. We describe that T-type current was significantly inhibited in the ventrobasal neurons that express Cav3.1, whereas in nucleus reticularis thalami neurons that express Cav3.2 and Cav3.3 channels, only the fast inactivating T-type current (Cav3.2 component) was significantly inhibited. Altogether, these data describe a new strategy to differentially inhibit Cav3 isoforms of the T-type calcium channels.  相似文献   

7.
Arterial smooth muscle cells enter the cell cycle and proliferate in conditions of disease and injury, leading to adverse vessel remodeling. In the pulmonary vasculature, diverse stimuli cause proliferation of pulmonary artery smooth muscle cells (PASMCs), pulmonary artery remodeling, and the clinical condition of pulmonary hypertension associated with significant health consequences. PASMC proliferation requires extracellular Ca(2+) influx that is intimately linked with intracellular Ca(2+) homeostasis. Among the primary sources of Ca(2+) influx in PASMCs is the low-voltage-activated family of T-type Ca(2+) channels; however, up to now, mechanisms for the action of T-type channels in vascular smooth muscle cell proliferation have not been addressed. The Ca(v)3.1 T-type Ca(2+) channel mRNA is upregulated in cultured PASMCs stimulated to proliferate with insulin-like growth factor-I (IGF-I), and this upregulation depends on phosphatidylinositol 3-kinase/Akt signaling. Multiple stimuli that trigger an acute rise in intracellular Ca(2+) in PASMCs, including IGF-I, also require the expression of Ca(v)3.1 Ca(2+) channels for their action. IGF-I also led to cell cycle initiation and proliferation of PASMCs, and, when expression of the Ca(v)3.1 Ca(2+) channel was knocked down by RNA interference, so were the expression and activation of cyclin D, which are necessary steps for cell cycle progression. These results confirm the importance of T-type Ca(2+) channels in proper progression of the cell cycle in PASMCs stimulated to proliferate by IGF-I and suggest that Ca(2+) entry through Ca(v)3.1 T-type channels in particular interacts with Ca(2+)-dependent steps of the mitogenic signaling cascade as a central component of vascular remodeling in disease.  相似文献   

8.
9.
Since cloning of the T-type or Ca(V)3.n calcium channel family in 1998-1999 much progress was made in investigation of their regulation. Most effective metal Ca(V)3 channel blockers are trivalent cations from lanthanide group together with transition metals La(3+) and Y(3+). Divalent cations Zn(2+), Cu(2+) and Ni(2+) inhibit Ca(V)3.2 channels more efficiently than Ca(V)3.1 and Ca(V)3.3 channels via second high-affinity binding site including histidine H191 specific for the Ca(V)3.2 channel. Dihydropyridines and phenylalkylamines in addition to block of L-type calcium channel can inhibit Ca(V)3 channels in clinically relevant concentration.  相似文献   

10.
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2,CaV3 .3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression ofCaV3 .2(-25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (-25) exon variants, (3) in the adult stage of hypertensive rats there is a both an increase in overallCaV3 .2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form, and (4) alternative splicing confers a variant-specific voltage-dependent facilitation ofCaV3 .2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.  相似文献   

11.
Voltage gated Ca(2+) channels are effective voltage sensors of plasma membrane which convert cell depolarizations into Ca(2+) signaling. The chromaffin cells of the adrenal medulla utilize a large number of Ca(2+) channel types to drive the Ca(2+)-dependent release of catecholamines into blood circulation, during normal or stress-induced conditions. Some of the Ca(2+) channels expressed in chromaffin cells (L, N, P/Q, R and T), however, do not control only vesicle fusion and catecholamine release. They also subserve a variety of key activities which are vital for the physiological and pathological functioning of the cell, like: (i) shaping the action potentials of electrical oscillations driven either spontaneously or by ACh stimulation, (ii) controlling the action potential frequency of tonic or bursts firing, (iii) regulating the compensatory and excess endocytosis following robust exocytosis and (iv) driving the remodeling of Ca(2+) signaling which occurs during stressors stimulation. Here, we will briefly review the well-established properties of voltage-gated Ca(2+) channels accumulated over the past three decades focusing on the most recent discoveries on the role that L- (Cav1.2, Cav1.3) and T-type (Cav3.2) channels play in the control of excitability, exocytosis and endocytosis of chromaffin cells in normal and stress-mimicking conditions.  相似文献   

12.
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2, CaV3.3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression of CaV3.2(−25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (−25) exon variants, (3) in the adult stage of hypertensive rats there is both an increase in overall CaV3.2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form and (4) alternative splicing confers a variant-specific voltage-dependent facilitation of CaV3.2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.Key words: voltage-dependent facilitation, alternative splicing, T-type calcium channel, hypertension, cardiac hypertrophy  相似文献   

13.
Electrophysiological characterization of T-type Ca2+ channel isoforms (Cav3.1, Cav3.2, and Cav3.3) has shown that all of the isoforms are low voltage-activated around resting membrane potential, but their current kinetics are distinctly different, with the activation and inactivation kinetics of the Cav3.1 and Cav3.2 channels being much faster than those of the Cav3.3 channel. We previously reported that multiple structural regions of the Cav3.3 T-type channel participate in determining its current kinetics. Here we have evaluated the relative contributions of individual cytoplasmic and trans-membrane regions to the current kinetics of the channel, by systematically replacing individual regions of Cav3.3 with the corresponding regions of Cav3.1. Introduction of the Cav3.1 III-IV loop into the Cav3.3 backbone accelerated both the activation and inactivation kinetics more prominently than any other intracellular loop or tail. Among the trans-membrane domains, introduction of the domain I of Cav3.1 into Cav3.3 accelerated both the activation and inactivation kinetics most effectively. These findings suggest that the current kinetics of the Cav3.3 channel are differentially controlled by several structural regions, among which the III-IV loop and domain I are the most prominent in governing both activation and inactivation kinetics.  相似文献   

14.
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca2+ channels toward a mechanistic study on the effect of EGCG on [Ca2+]i. Confocal Ca2+ imaging showed that EGCG induces a [Ca2+]i spike which is due to extracellular Ca2+ entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca2+channel blockers. siRNA knockdown of T-type Ca2+ channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K+ currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K+ channel induced a reduction of the EGCG [Ca2+]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K+ current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca2+]i by EGCG may be relevant in breast cancer treatment.  相似文献   

15.
Voltage-gated Ca(2+) channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca(2+) over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca(2+) permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca(2+)-channel alpha1 subunits, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3 functionally expressed in Xenopus oocytes. Our data show that all Ca(v)3 channels select Ca(2+) over Na(+) by affinity. Ca(v)3.1 and Ca(v)3.2 discriminate Ca(2+), Sr(2+) and Ba(2+) based on the ion's effects on the open channel probability, whilst Ca(v)3.3 discriminates based on the ion's intrapore binding affinity. All Ca(v)3s were characterized by much smaller difference in the K(D) values for Na(+) current blockade by Ca(2+) (K(D1) approximately 6 microM) and for Ca(2+) current saturation (K(D2) approximately 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na(+)/Ca(2+) current at close to physiological Ca(2+) concentrations, which was the strongest for Ca(v)3.3, smaller for Ca(v)3.2 and the smallest for Ca(v)3.1. In addition to intrapore Ca(2+) binding site(s) Ca(v)3.2, but not Ca(v)3.1 and Ca(v)3.3, is likely to possess an extracellular Ca(2+) binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca(2+) current in native cells.  相似文献   

16.
The Cav3.2 isoform of the T-type calcium channel is expressed in primary sensory neurons of the dorsal root ganglion (DRG), and these channels contribute to nociceptive and neuropathic pain in rats. However, there are conflicting reports on the roles of these channels in pain processing in rats and mice. In addition, the function of T-type channels in persistent inflammatory hyperalgesia is poorly understood. We performed behavioral and comprehensive histochemical analyses to characterize Cav3.2-expressing DRG neurons and examined the regulation of T-type channels in DRGs from C57BL/6 mice with carrageenan-induced inflammatory hyperalgesia. We show that approximately 20% of mouse DRG neurons express Cav3.2 mRNA and protein. The size of the majority of Cav3.2-positive DRG neurons (69 ± 8%) ranged from 300 to 700 μm2 in cross-sectional area and 20 to 30 μm in estimated diameter. These channels co-localized with either neurofilament-H (NF-H) or peripherin. The peripherin-positive cells also overlapped with neurons that were positive for isolectin B4 (IB4) and calcitonin gene-related peptide (CGRP) but were distinct from transient receptor potential vanilloid 1 (TRPV1)-positive neurons during normal mouse states. In mice with carrageenan-induced inflammatory hyperalgesia, Cav3.2 channels, but not Cav3.1 or Cav3.3 channels, were upregulated in ipsilateral DRG neurons during the sub-acute phase. The increased Cav3.2 expression partially resulted from an increased number of Cav3.2-immunoreactive neurons; this increase in number was particularly significant for TRPV1-positive neurons. Finally, preceding and periodic intraplantar treatment with the T-type calcium channel blockers mibefradil and NNC 55-0396 markedly reduced and reversed mechanical hyperalgesia during the acute and sub-acute phases, respectively, in mice. These data suggest that Cav3.2 T-type channels participate in the development of inflammatory hyperalgesia, and this channel might play an even greater role in the sub-acute phase of inflammatory pain due to increased co-localization with TRPV1 receptors compared with that in the normal state.  相似文献   

17.
18.
Ion channels participate in cell homeostasis and are involved in the regulation of proliferation and differentiation in several cell types; however, their presence and function in embryonic stem (ES) cells are poorly studied. We have investigated the existence of voltage-dependent inward currents in mouse ES cells and their ability to modulate proliferation and self-renewal. Patch-clamped ES cells had inactivating tetrodotoxin (TTX)-sensitive Na(+) currents as well as transient Ca(2+) currents abolished by the external application of Ni(2+). Biophysical and pharmacological data indicated that the Ca(2+) current is predominantly mediated by T-type (Ca(v)3.2) channels. The number of cells expressing T-type channels and Ca(v)3.2 mRNA levels increased at the G1/S transition of the cell cycle. TTX had no effect on ES cell proliferation. However, blockade of T-type Ca(2+) currents with Ni(2+) induced a decrease in proliferation and alkaline phosphatase positive colonies as well as reduced expression of Oct3/4 and Nanog, all indicative of loss in self-renewal capacity. Decreased alkaline phosphatase and Oct3/4 expression were also observed in cells subjected to small interfering RNA-induced knockdown for T-type (Ca(v)3.2) Ca(2+) channels, thus partially recapitulating the pharmacological effects on self-renewal. These results indicate that Ca(v)3.2 channel expression in ES cells is modulated along the cell cycle being induced at late G1 phase. They also suggest that these channels are involved in the maintenance of the undifferentiated state of mouse ES cells. We propose that Ca(2+) entry mediated by Ca(v)3.2 channels might be one of the intracellular signals that participate in the complex network responsible for ES cell self-renewal.  相似文献   

19.
The T-type Ca2+ channel Cav3.1 subunit is present in pulmonary microvascular endothelial cells (PMVECs), but not in pulmonary artery endothelial cells (PAECs). The present study sought to assess the role of Cav3.1 in thrombin-induced Weibel-Palade body exocytosis and consequent von Willebrand factor (VWF) release. In PMVECs and PAECs transduced with a green fluorescent protein (GFP)-tagged VWF chimera, we examined the real-time dynamics and secretory process of VWF-GFP-containing vesicles in response to thrombin and the cAMP-elevating agent isoproterenol. Whereas thrombin stimulated a progressive decrease in the number of VWF-GFP-containing vesicles in both cell types, isoproterenol only decreased the number of VWF-GFP-containing vesicles in PAECs. In PMVECs, thrombin-induced decrease in the number of VWF-GFP-containing vesicles was nearly abolished by the T-type Ca2+ channel blocker mibefradil as well as by Cav3.1 gene silencing with small hairpin RNA. Expression of recombinant Cav3.1 subunit in PAECs resulted in pronounced increase in thrombin-stimulated Ca2+ entry, which is sensitive to mibefradil. Together, these data indicate that VWF secretion from lung endothelial cells is regulated by two distinct pathways involving Ca2+ or cAMP, and support the hypothesis that activation of Cav3.1 T-type Ca2+ channels in PMVECs provides a unique cytosolic Ca2+ source important for Gq-linked agonist-induced VWF release.  相似文献   

20.
The mechanism by which Ca2+ enters electrically non-excitable cells is unclear. The sensitivity of the Ca2+ entry pathway in electrically non-excitable cells to inhibition by extracellular Ni2+ was used to direct the synthesis of a library of simple, novel compounds. These novel compounds inhibit Ca2+ entry into and, consequently, proliferation of several cancer cell lines. They showed stereoselective inhibition of proliferation and Ca2+ influx with identical stereoselective inhibition of heterologously expressed Cav3.2 isoform of T-type Ca2+ channels. Proliferation of human embryonic kidney (HEK)293 cells transfected with the Cav3.2 Ca2+ channel was also blocked. Cancer cell lines sensitive to our compounds express message for the Cav3.2 T-type Ca2+ channel isoform, its delta25B splice variant, or both, while a cell line resistant to our compounds does not. These observations raise the possibility that clinically useful drugs can be designed based upon the ability to block these Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号