首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryanodine receptor (RyR)-mediated Ca2+ dysregulation is associated with Alzheimer's disease (AD) neuropathology. Using 2-photon Ca2+ imaging and patch clamp recordings in brain slice preparations from young 3xTg-AD and NonTg control mice, we recently demonstrated that RyR-mediated Ca2+-induced Ca2+ release (CICR) is substantially increased within dendrites from AD neurons, such that synaptic stimulation alone is sufficient to generate aberrant CICR. We also observed supra-additive Ca2+ release upon coincident RyR activation with synaptic stimulation in 3xTg-AD mice. Here, we describe an additional observed phenomenon: generation of patterned Ca2+ oscillations in the spines and dendrites from AD neurons upon coincident RyR and synaptic stimulation. As the temporal entrainment of Ca2+ signals influences many downstream cellular and synaptic functions, these abnormal oscillatory patterns may be associated with the structural and functional breakdown of synapses in AD.  相似文献   

2.
3.
The neonatal mammalian skeletal muscle contains both type 1 and type 3 ryanodine receptors (RyR1 and RyR3) located in the sarcoplasmic reticulum membrane. An allosteric interaction between RyR1 and dihydropyridine receptors located in the plasma membrane mediates voltage-induced Ca(2+) release (VICR) from the sarcoplasmic reticulum. RyR3, which disappears in adult muscle, is not involved in VICR, and the role of the transiently expressed RyR3 remains elusive. Here we demonstrate that RyR1 participates in both VICR and Ca(2+)-induced Ca(2+) release (CICR) and that RyR3 amplifies RyR1-mediated CICR in neonatal skeletal muscle. Confocal measurements of intracellular Ca(2+) in primary cultured mouse skeletal myotubes reveal active sites of Ca(2+) release caused by peripheral coupling between dihydropyridine receptors and RyR1. In myotubes lacking RyR3, the peripheral VICR component is unaffected, and RyR1s alone are able to support inward CICR propagation in most cells at an average speed of approximately 190 microm/s. With the co-presence of RyR1 and RyR3 in wild-type cells, unmitigated radial CICR propagates at 2,440 microm/s. Because neonatal skeletal muscle lacks a well developed transverse tubule system, the RyR3 reinforcement of CICR seems to ensure a robust, uniform, and synchronous activation of Ca(2+) release throughout the cell body. Such functional interplay between RyR1 and RyR3 can serve important roles in Ca(2+) signaling of cell differentiation and muscle contraction.  相似文献   

4.
The type 1 ryanodine receptor (RyR1) is a Ca(2+) release channel found in the sarcoplasmic reticulum of skeletal muscle and plays a pivotal role in excitation-contraction coupling. The RyR1 channel is activated by a conformational change of the dihydropyridine receptor upon depolarization of the transverse tubule, or by Ca(2+) itself, i.e. Ca(2+)-induced Ca(2+) release (CICR). The molecular events transmitting such signals to the ion gate of the channel are unknown. The S4-S5 linker, a cytosolic loop connecting the S4 and S5 transmembrane segments in six-transmembrane type channels, forms an α-helical structure and mediates signal transmission in a wide variety of channels. To address the role of the S4-S5 linker in RyR1 channel gating, we performed alanine substitution scan of N-terminal half of the putative S4-S5 linker (Thr(4825)-Ser(4829)) that exhibits high helix probability. The mutant RyR1 was expressed in HEK cells, and CICR activity was investigated by caffeine-induced Ca(2+) release, single-channel current recordings, and [(3)H]ryanodine binding. Four mutants (T4825A, I4826A, S4828A, and S4829A) had reduced CICR activity without changing Ca(2+) sensitivity, whereas the L4827A mutant formed a constitutive active channel. T4825I, a disease-associated mutation for malignant hyperthermia, exhibited enhanced CICR activity. An α-helical wheel representation of the N-terminal S4-S5 linker provides a rational explanation to the observed activities of the mutants. These results suggest that N-terminal half of the S4-S5 linker may form an α-helical structure and play an important role in RyR1 channel gating.  相似文献   

5.
Calcineurin is a Ca(2+) and calmodulin-dependent protein phosphatase with diverse cellular functions. Here we examined the physical and functional interactions between calcineurin and ryanodine receptor (RyR) in a C2C12 cell line derived from mouse skeletal muscle. Coimmunoprecipitation experiments revealed that the association between RyR and calcineurin exhibits a strong Ca(2+) dependence. This association involves a Ca(2+) dependent interaction between calcineurin and FK506-binding protein (FKBP12), an accessory subunit of RyR. Pretreatment with cyclosporin A, an inhibitor of calcineurin, enhanced the caffeine-induced Ca(2+) release (CICR) in C2C12 cells. This effect was similar to those of FK506 and rapamycin, two drugs known to cause dissociation of FKBP12 from RyR. Overexpression of a constitutively active form of calcineurin in C2C12 cells, DeltaCnA(391-521) (deletion of the last 131 amino acids from calcineurin), resulted in a decrease in CICR. This decrease in CICR activity was partially recovered by pretreatment with cyclosporin A. Furthermore, overexpression of an endogenous calcineurin inhibitor (cain) or an inactive form of calcineurin (DeltaCnA(H101Q)) in C2C12 cells resulted in up-regulation of CICR. Taken together, our data suggest that a trimeric-interaction among calcineurin, FKBP12, and RyR is important for the regulation of the RyR channel activity and may play an important role in the Ca(2+) signaling of muscle contraction and relaxation.  相似文献   

6.
Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. In addition, other studies have reported aging- or AD model-related alterations in Ca2+ release from ryanodine receptors (RyR) on intracellular stores. The Ca2+-sensitive RyR channels amplify plasmalemmal Ca2+ influx by the mechanism of Ca2+-induced Ca2+ release (CICR). Considerable evidence indicates that a preferred functional link is present between L-VGCCs and RyRs which operate in series in heart and some brain cells. Here, we review studies implicating RyRs in altered Ca+ regulation in cell toxicity, aging, and AD. A recent study from our laboratory showed that increased CICR plays a necessary role in the emergence of Ca2+-related biomarkers of aging. Consequently, we propose an expanded L-VGCC/Ca2+ hypothesis, in which aging/pathological changes occur in both L-type Ca2+ channels and RyRs, and interact to abnormally amplify Ca2+ transients. In turn, the increased transients result in dysregulation of multiple Ca2+-dependent processes and, through somewhat different pathways, in accelerated functional decline during aging and AD.  相似文献   

7.
8.
Mg(2+) serves as a competitive antagonist against Ca(2+) in the high-affinity Ca(2+) activation site (A-site) and as an agonist of Ca(2+) in the low-affinity Ca(2+) inactivation site (I-site) of the ryanodine receptor (RyR), which mediates Ca(2+)-induced Ca(2+) release (CICR). This paper presents the quantitative determination of the affinities for Ca(2+) and Mg(2+) of A- and I-sites of RyR in frog skeletal muscles by measuring [(3)H]ryanodine binding to purified alpha- and beta-RyRs and CICR activity in skinned fibers. There was only a minor difference in affinity at most between alpha- and beta-RyRs. The A-site favored Ca(2+) 20- to 30-fold over Mg(2+), whereas the I-site was nonselective between the two cations. The RyR in situ showed fivefold higher affinities for Ca(2+) and Mg(2+) of both sites than the purified alpha- and beta-RyRs with unchanged cation selectivity. Adenine nucleotides, whose stimulating effect was found to be indistinguishable between free and complexed forms, did not alter the affinities for cations in either site, except for the increased maximum activity of RyR. Caffeine increased not only the affinity of the A-site for Ca(2+) alone, but also the maximum activity of RyR with otherwise minor changes. The results presented here suggest that the rate of CICR in frog skeletal muscles appears to be too low to explain the physiological Ca(2+) release, even though Mg(2+) inhibition disappears.  相似文献   

9.
Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.  相似文献   

10.
Ca(2+) mediates the functional coupling between L-type Ca(2+) channel (LTCC) and sarcoplasmic reticulum (SR) Ca(2+) release channel (ryanodine receptor, RyR), participating in key pathophysiological processes. This crosstalk manifests as the orthograde Ca(2+)-induced Ca(2+)-release (CICR) mechanism triggered by Ca(2+) influx, but also as the retrograde Ca(2+)-dependent inactivation (CDI) of LTCC, which depends on both Ca(2+) permeating through the LTCC itself and on SR Ca(2+) release through the RyR. This latter effect has been suggested to rely on local rather than global Ca(2+) signaling, which might parallel the nanodomain control of CDI carried out through calmodulin (CaM). Analyzing the CICR in catecholaminergic polymorphic ventricular tachycardia (CPVT) mice as a model of RyR-generated Ca(2+) leak, we evidence here that increased occurrence of the discrete local SR Ca(2+) releases through the RyRs (Ca(2+) sparks) cause a depolarizing shift in activation and a hyperpolarizing shift in isochronic inactivation of cardiac LTCC current resulting in the reduction of window current. Both increasing fast [Ca(2+)](i) buffer capacity or depleting SR Ca(2+) store blunted these changes, which could be reproduced in WT cells by RyRCa(2+) leak induced with Ryanodol and CaM inhibition.Our results unveiled a new paradigm for CaM-dependent effect on LTCC gating and further the nanodomain Ca(2+) control of LTCC, emphasizing the importance of spatio-temporal relationships between Ca(2+) signals and CaM function.  相似文献   

11.
In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.  相似文献   

12.
Zhang SY  Liu G  Wang DL  Guo XJ  Qian GS 《生理学报》2000,52(6):497-501
本文测定了兔膈肌钙释放单位中骨骼肌型DHPRα1-亚单位和RyRs的mRNA与蛋白表达水平,探讨了兔膈肌钙释放单位的结构组成特征。采用RT-PCR、原位杂交和免疫组织化学技术,分别测定兔膈肌骨骼肌型DHPRα1-亚单位和RyR1、RyR2及RyR3的mRNA与蛋白表达。结果显示,兔膈肌可见较高水平的骨骼肌型α1-亚单位和RyR1mRNA与蛋白表达;较低水平的RyR3 mRNA与蛋白表达。表明兔膈肌  相似文献   

13.
The regulation of the Ca2+ -induced Ca2+ release (CICR) from intracellular stores is a critical step in the cardiac cycle. The inherent positive feedback of CICR should make it a self-regenerating process. It is accepted that CICR must be governed by some negative control, but its nature is still debated. We explore here the importance of the Ca2+ released from sarcoplasmic reticulum (SR) on the mechanisms that may control CICR. Specifically, we compared the effect of replacing Ca2+ with Sr2+ on intracellular Ca2+ signaling in intact cardiac myocytes as well as on the function of single ryanodine receptor (RyR) Ca2+ release channels in panar bilayers. In cells, both CICR and Sr2+ -induced Sr2+ release (SISR) were observed. Action potential induced Ca2+ -transients and spontaneous Ca2+ waves were considerably faster than their Sr2+ -mediated counterparts. However, the kinetics of Ca2+ and Sr2+ sparks was similar. At the single RyR channel level, the affinities of Ca2+ and Sr2+ activation were different but the affinities of Ca2+ and Sr2+ inactivation were similar. Fast Ca2+ and Sr2+ stimuli activated RyR channels equally fast but adaptation (a spontaneous slow transition back to steady-state activity levels) was not observed in the Sr2+ case. Together, these results suggest that regulation of the RyR channel by cytosolic Ca2+ is not involved in turning off the Ca2+ spark. In contrast, cytosolic Ca2+ is important in the propagation global Ca2+ release events and in this regard single RyR channel sensitivity to cytosolic Ca2+ activation, not low-affinity cytosolic Ca2+ inactivation, is a key factor. This suggests that the kinetics of local and global RyR-mediated Ca2+ release signals are affected in a distinct way by different divalent cations in cardiac muscle cells.  相似文献   

14.
Ca(2+)-induced Ca(2+) release (CICR) is a ubiquitous mechanism by which Ca(2+) release from the endoplasmic reticulum amplifies the trigger Ca(2+) entry and generates propagating Ca(2+) waves. To elucidate the mechanisms that control this positive feedback, we investigated the spatial and temporal kinetics and measured the gain function of CICR in small sensory neurons from mammalian dorsal root ganglions (DRGs). We found that subsurface Ca(2+) release units (CRUs) are under tight local control by Ca(2+) entry, whereas medullar CRUs as a "common pool" system are recruited by inwardly propagating CICR. Active CRUs often displayed repetitive Ca(2+) sparks, conferring the ability to encode a "memory" of neuronal activity well beyond the duration of an action potential. Store Ca(2+) reserve was able to support all CRUs each to fire approximately 15 sparks, excluding use-dependent inactivation or store depletion as the major CICR termination mechanism. Importantly, CICR in DRG neurons operated in a low gain, linear regime (gain = 0.54), which conferred intrinsic stability to CICR. Combined with high Ca(2+) current density (-156 pA/pF at -10 mV), such a low gain CICR system generated large intracellular Ca(2+) transients without jeopardizing the stability. These findings provide the first demonstration that CICR operating in a low gain regime can be harnessed to provide a robust and graded amplification of Ca(2+) signal in the absence of counteracting inhibitory mechanism.  相似文献   

15.
16.
Calcium-induced calcium release (CICR) has been observed in cardiac myocytes as elementary calcium release events (calcium sparks) associated with the opening of L-type Ca(2+) channels. In heart cells, a tight coupling between the gating of single L-type Ca(2+) channels and ryanodine receptors (RYRs) underlies calcium release. Here we demonstrate that L-type Ca(2+) channels activate RYRs to produce CICR in smooth muscle cells in the form of Ca(2+) sparks and propagated Ca(2+) waves. However, unlike CICR in cardiac muscle, RYR channel opening is not tightly linked to the gating of L-type Ca(2+) channels. L-type Ca(2+) channels can open without triggering Ca(2+) sparks and triggered Ca(2+) sparks are often observed after channel closure. CICR is a function of the net flux of Ca(2+) ions into the cytosol, rather than the single channel amplitude of L-type Ca(2+) channels. Moreover, unlike CICR in striated muscle, calcium release is completely eliminated by cytosolic calcium buffering. Thus, L-type Ca(2+) channels are loosely coupled to RYR through an increase in global [Ca(2+)] due to an increase in the effective distance between L-type Ca(2+) channels and RYR, resulting in an uncoupling of the obligate relationship that exists in striated muscle between the action potential and calcium release.  相似文献   

17.
Ryanodine receptor (RyR)-gated Ca2+ stores have recently been identified in cochlear spiral ganglion neurons (SGN) and likely contribute to Ca2+ signalling associated with auditory neurotransmission. Here, we identify an ionotropic glutamate receptor signal transduction pathway which invokes RyR-gated Ca2+ stores in SGN via Ca2+-induced Ca2+ release (CICR). Ca2+ levels were recorded in SGN in situ within rat cochlear slices (postnatal day 0-17) using the Ca2+ indicator fluo-4. RyR-gated Ca2+ stores were confirmed by caffeine-induced increases in intracellular Ca2+ which were blocked by ryanodine (100 microM) and were independent of external Ca2+. Glutamate evoked comparable increases in intracellular Ca2+, but required the presence of external Ca2+. Ca2+ influx via the glutamate receptor was found to elicit CICR via RyR-gated Ca2+ stores, as shown by the inhibition of the response by prior depletion of the Ca2+ stores with caffeine, the SERCA inhibitor thapsigargin, or ryanodine. The glutamate analogue AMPA (alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) elicited Ca2+ responses that could be inhibited by caffeine. Glutamate- and AMPA-mediated Ca2+ responses were eliminated with the AMPA/Kainate receptor antagonist DNQX (6,7-dinitroquinoxaline-2,3-dione). These data demonstrate functional coupling between somatic AMPA-type glutamate receptors and intracellular Ca(2+) stores via RyR-dependent CICR in primary auditory neurons.  相似文献   

18.
19.
Excitation-contraction (E-C) coupling and Ca(2+)-induced Ca(2+) release in smooth and cardiac muscles is mediated by the L-type Ca(2+) channel isoform Ca(v)1.2 and the ryanodine receptor isoform RyR2. Although physical coupling between Ca(v)1.1 and RyR1 in skeletal muscle is well established, it is generally assumed that Ca(v)1.2 and RyR2 do not directly communicate either passively or dynamically during E-C coupling. In the present work, we re-examined this assumption by studying E-C coupling in the detrusor muscle of wild type and Homer1(-/-) mice and by demonstrating a Homer1-mediated dynamic interaction between Ca(v)1.2 and RyR2 using the split green fluorescent protein technique. Deletion of Homer1 in mice (but not of Homer2 or Homer3) resulted in impaired urinary bladder function, which was associated with higher sensitivity of the detrusor muscle to muscarinic stimulation and membrane depolarization. This was not due to an altered expression or function of RyR2 and Ca(v)1.2. Most notably, expression of Ca(v)1.2 and RyR2 tagged with the complementary C- and N-terminal halves of green fluorescent protein and in the presence and absence of Homer1 isoforms revealed that H1a and H1b/c reciprocally modulates a dynamic interaction between Ca(v)1.2 and RyR2 to regulate the intensity of Ca(2+)-induced Ca(2+) release and its dependence on membrane depolarization. These findings define the molecular basis of a "two-state" model of E-C coupling by Ca(v)1.2 and RyR2. In one state, Ca(v)1.2 couples to RyR2 by H1b/c, which results in reduced responsiveness to membrane depolarization and in the other state H1a uncouples Ca(v)1.2 and RyR2 to enhance responsiveness to membrane depolarization. These findings reveal an unexpected and novel mode of interaction and communication between Ca(v)1.2 and RyR2 with important implications for the regulation of smooth and possibly cardiac muscle E-C coupling.  相似文献   

20.
Graded or "quantal" Ca(2+) release from intracellular stores has been observed in various cell types following activation of either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate receptors (InsP(3)R). The mechanism causing the release of Ca(2+) stores in direct proportion to the strength of stimulation is unresolved. We investigated the properties of quantal Ca(2+) release evoked by activation of RyR in PC12 cells, and in particular whether the sensitivity of RyR to the agonist caffeine was altered by lumenal Ca(2+). Quantal Ca(2+) release was observed in cells stimulated with 1 to 40 mM caffeine, a range of caffeine concentrations giving a >10-fold change in lumenal Ca(2+) content. The Ca(2+) load of the caffeine-sensitive stores was modulated by allowing them to refill for varying times after complete discharge with maximal caffeine, or by depolarizing the cells with K(+) to enhance their normal steady-state loading. The threshold for RyR activation was sensitized approximately 10-fold as the Ca(2+) load increased from a minimal to a maximal loading. In addition, the fraction of Ca(2+) released by low caffeine concentrations increased. Our data suggest that RyR are sensitive to lumenal Ca(2+) over the full range of Ca(2+) loads that can be achieved in an intact PC12 cell, and that changes in RyR sensitivity may be responsible for the termination of Ca(2+) release underlying the quantal effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号