首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The response of heterotrophic CO2 flux to soil warming   总被引:3,自引:0,他引:3  
In a forest ecosystem at steady state, net carbon (C) assimilation by plants and C loss through soil and litter decomposition by heterotrophic organisms are balanced. However, a perturbation to the system, such as increased mean soil temperature, will lead to faster decay, enhancing CO2 release from decomposers, and thus upsetting the balance. Recent in situ experiments have indicated that the stimulation of soil respiration following a step increase in annual average soil temperature declines over time. One possible explanation for this decline may be changes in substrate availability. This hypothesis is examined by using the ecosystem model G'DAY, which simulates C and nitrogen (N) dynamics in plants and soil. We applied the model to observations from a soil‐warming experiment in a Norway spruce (Picea abies (L.) Karst.) stand by simulating a step increase of soil temperature. The model provided a good qualitative reproduction of the observed reduction of heterotrophic respiration (Rh) under sustained warming. The simulations showed how the combined effects of faster turnover and reduced substrate availability lead to a transient increase of Rh. The simulated annual increase in Rh from soil was 60% in the first year after perturbation but decreased to 30% after a decade. One conclusion from the analysis of the simulations is that Rh can decrease even though the temperature response function for decomposition remains unchanged. G'DAY suggests that acclimation of Rh to soil warming is partly an effect of substrate depletion of labile C pools during the first decade of warming as a result of accelerated rates of mineralization. The response is attributed mainly to changing levels of C in pools with short time constants, reflecting the importance of high‐quality soil C fractions. Changes of the structure or physiology of the decomposer community were not invoked. Therefore, it becomes a question of definition whether the simulated dynamics of the declining response of CO2 release to the warming should be named acclimation or seen as a natural part of the system dynamics.  相似文献   

2.
The perturbation of the global nitrogen (N) cycle due to the increase in N deposition over the last 150 years will likely have important effects on carbon (C) cycling, particularly via impacts on forest C sequestration. To investigate this effect, and the relative importance of different mechanisms involved, we used the Generic Decomposition And Yield (G'DAY) forest C–N cycling model, introducing some new assumptions which focus on N deposition. Specifically, we (i) considered the effect of forest management, (ii) assumed that belowground C allocation was a function of net primary production, (iii) assumed that foliar litterfall and specific leaf area were functions of leaf N concentration, (iv) assumed that forest canopies can directly take up N, and (v) modified the model such that leaching occurred only for nitrate N. We applied the model with and without each of these modifications to estimate forest C sequestration for different N deposition levels. Our analysis showed that N deposition can have a large effect on forest C storage at ecosystem level. Assumptions (i), (ii) and (iv) were the most important, each giving rise to a markedly higher level of forest C sequestration than in their absence. On the contrary assumptions (iii) and (v) had a negligible effect on simulated net ecosystem production (NEP). With all five model modifications in place, we estimated that the C storage capacity of a generic European forest ecosystem was at most 121 kg C kg?1 N deposited. This estimate is four times higher than that obtained with the original version of G'DAY (27.8 kg C kg?1 N). Thus, depending on model assumptions, the G'DAY ecosystem model can reproduce the range of dC : dNdep values found in the literature. We conclude that effects of historic N deposition must be taken into account when estimating the C storage capacity of a forest ecosystem.  相似文献   

3.
Vegetation responses to high [CO2] include both direct photosynthetic effects and indirect effects associated with various plant and soil feedbacks. Synthesis of these direct and indirect effects requires ecosystem process models describing the cycling of carbon and essential mineral nutrients through plants and soils. Here we use the ecosystem model G'DAY to investigate responses to an instantaneous doubling of [CO2]. The analysis indicates that the magnitude and even direction of the growth response to high [CO2] can vary widely on different timescales, because responses on different timescales are determined by different ecosystem-level feedbacks and hence by different sets of key model parameters. Of particular importance are parameters describing the flexibility of plant and soil nitrogen to carbon (N:C) ratios; large responses occur if N:C ratios decline significantly at high [CO2], with little or no response if N:C ratios are inflexible. According to G'DAY, the CO2-response changes over time because responses on longer timescales are dictated by the N:C ratios of less rapidly cycled organic matter.  相似文献   

4.
No‐tillage cropping systems with direct seeding into a mulch of plant residues from cover crops – the so‐called direct seeding mulch‐based cropping (DMC) systems – have been adopted widely over the last 10–15 years in the Cerrado region of Brazil. They are replacing the traditional soybean monoculture with bare fallow using conventional tillage (CT) practices. The objective of this study was to examine how DMC practices affect soil organic carbon (SOC) dynamics and to assess their potential for enhanced soil carbon (C) storage. The approach was to determine soil C stocks along a chronosequence of fields under DMC, and then to apply the generic decomposition and yield (G'DAY) plant–soil model to analyse the soil C storage potential for a number of cropping systems. Forty‐five fields were selected on a plateau of Ferralsols in the central Cerrado region to represent a chronosequence of 0–12 years under continuous DMC. Before DMC the fields had been under CT soybean monoculture following the clearing of the native savannah. An average increase in SOC stocks of 0.83 Mg C ha?1 yr?1 in the 0–20 cm topsoil was measured. The corresponding increase in total soil nitrogen was 79 kg N ha?1 yr?1. The G'DAY model predicted a net accumulation of 0.70–1.15 Mg C ha?1 yr?1 in the 0–40 cm topsoil for the first 12 years, depending on the type of soil and DMC system. Model predictions showed that less soil C was accumulated under DMC systems that commenced immediately after clearing the native savannah. Gains in soil C under DMC were primarily due to the introduction of a second crop that caused higher net primary productivity, leading to higher plant C inputs to soil. A rough estimation shows that the conversion of 6 million ha of CT soybean monoculture to DMC in the Cerrados would enhance soil C storage by 4.9 Tg C yr?1 during at least the first 12 years following the conversion to DMC.  相似文献   

5.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

6.
Empirical and modeling studies have shown that the magnitude and duration of the primary production response to elevated carbon dioxide (CO2) can be constrained by limiting supplies of soil nitrogen (N). We have studied the response of a southern US pine forest to elevated CO2 for 5 years (1997–2001). Net primary production has increased significantly under elevated CO2. We hypothesized that the increase in carbon (C) fluxes to the microbial community under elevated CO2 would increase the rate of N immobilization over mineralization. We tested this hypothesis by quantifying the pool sizes and fluxes of inorganic and organic N in the forest floor and top 30 cm of mineral soil during the first 5 years of CO2 fumigation. We observed no statistically significant change in the gross or net rate of inorganic N mineralization and immobilization in any soil horizon under elevated CO2. Similarly, elevated CO2 had no statistically significant effect on the concentration or flux of organic N, including amino acids. Microbial biomass N was not significantly different between CO2 treatments. Thus, we reject our hypothesis that elevated CO2 increases the rate of N immobilization. The quantity and chemistry of the litter inputs to the forest floor and mineral soil horizons can explain the limited range of microbially mediated soil–N cycling responses observed in this ecosystem. Nevertheless a comparative analysis of ecosystem development at this site and other loblolly pine forests suggests that rapid stand development and C sequestration under elevated CO2 may be possible only in the early stages of stand development, prior to the onset of acute N limitation.  相似文献   

7.
Invasion of exotic forest pests and pathogens is a serious environmental problem for many forests throughout the world, and has been especially damaging to forests of eastern North America. We studied the impacts of an exotic pest/pathogen complex, the beech bark disease (BBD), in the Catskill Mountains of New York State, USA. In this region, BBD has caused a decline in the basal area of American beech (Fagus grandifolia Ehrh.) over the last 60 years and this decline has been accompanied by an increase in the basal area of sugar maple (Acer saccharum Marsh.). We studied the impacts of the BBD on carbon (C) and nitrogen (N) cycling using a series of stands that represented a sequence of disease impact and beech replacement by sugar maple. Our study showed that these long-term changes in tree species composition can lead to important changes in C and N cycling in the ecosystem, including an increase in litter decomposition, a decrease in soil C:N ratio, and an increase in extractable nitrate in the soil and nitrate in soil solution. Rates of potential net N mineralization and nitrification did not change across the BBD sequence, but the fraction of mineralized N that was nitrified increased significantly. Many of the observed changes in ecosystem function are larger in magnitude than those attributed to climate change or air pollution, suggesting that the impacts of invasive pests and pathogens on tree species composition could be one of the most important factors driving changes in C and N cycling in these forests in the coming decades.  相似文献   

8.
Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m?2 and 245 g N m?2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above‐ and below‐ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long‐term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures <20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long‐term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest‐derived C and its replacement by pasture‐derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.  相似文献   

9.
We used the ecosystem process model Biome‐BGC to simulate the effects of harvest and residue removal management scenarios on soil carbon (C), available soil nitrogen (N), net primary production (NPP), and net ecosystem production (NEP) in jack pine (Pinus banksiana Lamb.) and sugar maple (Acer saccharum Marsh) ecosystems in northern Wisconsin, USA. To assess harvest effects, we simulated short (50‐year) and long (100‐year) harvest intervals, high (clear‐cut) and low (selective) harvest intensities, and three levels of residue retention (15%, 25%, and 35%) over a 500‐year period. The model simulation of NPP, soil C accumulation, and NEP agreed reasonably well with biometric and eddy‐covariance measurements of these two ecosystems. The more intensive (50‐year rotation clear‐cuts with low residue retention) harvest scenarios tended to have the greatest NEP (420 and 678 t C ha?1 for the 500‐year interval for jack pine and sugar maple, respectively). All the harvest scenarios decreased mineral soil C and available mineral soil N content relative to the no‐harvest scenario for jack pine and sugar maple. The rate of change in mineral soil C decreased the greatest in the most intensive biomass removal scenarios (?0.012 and ?0.072 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively) and the smallest decrease was observed in the least intensive biomass removal scenarios (?0.002 and ?0.009 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively). The more intensive biomass removal harvest scenarios in sugar maple significantly decreased peak productivity (NPP) in the simulation period.  相似文献   

10.
Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes.  相似文献   

11.
Net ecosystem carbon exchange in two experimental grassland ecosystems   总被引:2,自引:0,他引:2  
Increases in net primary production (NPP) may not necessarily result in increased C sequestration since an increase in uptake can be negated by concurrent increases in ecosystem C losses via respiratory processes. Continuous measurements of net ecosystem C exchange between the atmosphere and two experimental cheatgrass (Bromus tectorum L.) ecosystems in large dynamic flux chambers (EcoCELLs) showed net ecosystem C losses to the atmosphere in excess of 300 g C m?2 over two growing cycles. Even a doubling of net ecosystem production (NEP) after N fertilization in the second growing season did not compensate for soil C losses incurred during the fallow period. Fertilization not only increased C uptake in biomass but also enhanced C losses through soil respiration from 287 to 469 g C m?2, mainly through an increase in rhizosphere respiration. Fertilization decreased dissolved inorganic C losses through leaching of from 45 to 10 g C m?2. Unfertilized cheatgrass added 215 g C m?2 as root‐derived organic matter but the contribution of these inputs to long‐term C sequestration was limited as these deposits rapidly decomposed. Fertilization increased NEP but did not increase belowground C inputs most likely due to a concurrent increase in the production and decomposition of rhizodeposits. Decomposition of soil organic matter (SOM) was reduced by fertilizer additions. The results from our study show that, although annual grassland ecosystems can add considerable amounts of C to soils during the growing season, it is unlikely that they sequester large amounts of C because of high respiratory losses during dormancy periods. Although fertilization could increase NEP, fertilization might reduce soil C inputs as heterotrophic organisms favor root‐derived organic matter over native SOM.  相似文献   

12.
At the Harvard Forest, Massachusetts, a long-term effort is under way to study responses in ecosystem biogeochemistry to chronic inputs of N in atmospheric deposition in the region. Since 1988, experimental additions of NH4NO3 (0, 5 and 15 g N m–2 yr–1) have been made in two forest stands:Pinus resinosa (red pine) and mixed hardwood. In the seventh year of the study, we measured solute concentrations and estimated solute fluxes in throughfall and at two soil depths, beneath the forest floors (Oa) and beneath the B horizons.Beneath the Oa, concentrations and fluxes of dissolved organic C and N (DOC and DON) were higher in the coniferous stand than in the hardwood stand. The mineral soil exerted a strong homogenizing effect on concentrations beneath the B horizons. In reference plots (no N additions), DON composed 56% (pine) and 67% (hardwood) of the total dissolved nitrogen (TDN) transported downward from the forest floor to the mineral soil, and 98% of the TDN exported from the solums. Under N amendments, fluxes of DON from the forest floor correlated positively with rates of N addition, but fluxes of inorganic N from the Oa exceeded those of DON. Export of DON from the solums appeared unaffected by 7 years of N amendments, but as in the Oa, DON composed smaller fractions of TDN exports under N amendments. DOC fluxes were not strongly related to N amendment rates, but ratios of DOC:DON often decreased.The hardwood forest floor exhibited a much stronger sink for inorganic N than did the pine forest floor, making the inputs of dissolved N to mineral soil much greater in the pine stand. Under the high-N treatment, exports of inorganic N from the solum of the pine stand were increased >500-fold over reference (5.2 vs. 0.01 g N m–2 yr–1), consistent with other manifestations of nitrogen saturation. Exports of N from the solum in the pine forest decreased in the order NO3-N> NH4-N> DON, with exports of inorganic N 14-fold higher than exports of DON. In the hardwood forest, in contrast, increased sinks for inorganic N under N amendments resulted in exports of inorganic N that remained lower than DON exports in N-amended plots as well as the reference plot.  相似文献   

13.
An improved understanding of the response of forest ecosystems to elevated levels of CO2 in the atmosphere is crucial because atmospheric CO2 concentration continues to increase at an accelerating rate and forests are an important sink in the global carbon cycle. Several CO2‐enrichment experiments have now been running for more than 10 years, with highly variable short‐term results after the first decade. Responses to rising [CO2] over the next few decades will depend on several plant and ecosystem feedbacks that are inadequately understood. In this study, we conduct a sensitivity analysis, within the context of the simulated CO2 response, using a new version of the G'DAY ecosystem model, with an improved decomposition submodel, applied to a nitrogen‐limited Norway spruce forest site in the north of Sweden. The new decomposition model incorporates important modifications to soil processes, including some that constitute negative feedbacks on an ecosystem's growth response to elevated [CO2]. The sensitivity analysis reveals key parameters and processes that are important for the simulated CO2 response on the short term and others that are more important on the long term. A process that has a strong impact on the short‐term response is a change in decomposer composition, potentially in response to altered litter quality. Parameters that become increasingly important in the long term are carbon allocation to root exudates that are directly or indirectly associated with atmospheric N2 fixation, and the rate of humification of soil organic matter. We identify factors intrinsic to species and site (microbes and resources) and ecosystem nutrient supply that determine the duration of the enhanced simulated growth response to elevated [CO2].  相似文献   

14.
不同入侵程度下飞机草对喀斯特地区土壤理化性质的影响   总被引:1,自引:0,他引:1  
外来生物入侵威胁着全球的生物多样性和生态系统的功能,研究外来入侵植物对土壤理化性质的影响有助于理解外来入侵植物的入侵机制。以广西喀斯特地区飞机草(Chromolaena odorata)入侵生境为研究对象,比较分析了不同飞机草入侵程度下(对照、轻度入侵、中度入侵、重度入侵)土壤物理和化学指标变化特征。结果表明:随着飞机草的入侵程度加重,土壤容重显著增加,轻度入侵、中度入侵和重度入侵生境下土壤容重分别比对照增加了10.3%、16.7%、22.3%,土壤非毛管孔隙度、总孔隙度和土壤含水量显著降低,土壤毛管孔隙度无显著变化;飞机草入侵对土壤pH值无显著影响,随着入侵程度加重,土壤速效磷和速效钾的含量显著升高,在重度入侵生境下土壤速效磷和速效钾含量分别比对照增加了4.3倍、3.8倍,土壤全氮和有机质含量显著降低。飞机草入侵显著改变了土壤理化性状,导致喀斯特地区土壤物理结构退化,生态系统水土保持能力下降,同时飞机草通过改变土壤养分循环提高了土壤可直接利用养分的水平,创造对自身有利的土壤环境,进而促进其生长和扩散。  相似文献   

15.
Gelfand I  Grünzweig JM  Yakir D 《Oecologia》2012,168(2):563-575
Nitrogen (N) and water availability are important factors affecting ecosystem productivity that can be influenced by land-use change. We hypothesized that the observed increase in carbon (C) sequestration associated with afforestation of semi-arid sparse shrubland must also be associated with an increase in N input. We tested this hypothesis by reconstructing the ecosystem N budget of two ecosystems, a semi-arid shrubland and a nearby planted pine forest, using measurements augmented with literature-based estimates. Our findings demonstrate that, contrary to our hypothesis, massive C sequestration by the pine forest could be accounted for without a change in the net N budget (i.e., neither elevated N inputs nor reduced N losses). However, in comparison to the shrubland, the forest showed an almost tripling in aboveground N use efficiency (NUE; 235 vs. 83 kg dry mass kg−1 N) and a doubling in ecosystem level C/N ratio (16 vs. 8, for the forest and shrubland, respectively). Nitrogen cycling slowed in the forest compared to the shrubland: net N mineralization rates in soils decreased by approximately 50%, decomposition rates decreased by approximately 20%, and NOx loss decreased by approximately 64%. These adjustments in N cycling provide a possible basis for increased NUE and subsequent C sequestration without net change in the overall N budget, which should be addressed in future investigations.  相似文献   

16.
Globally, land-use change is occurring rapidly, and impacts on biogeochemical cycling may be influenced by previous land uses. We examined differences in soil C and N cycling during long-term laboratory incubations for the following land-use sequence: indigenous forest (soil age = 1800 yr); 70-year-old pasture planted after forest clearance; 22-year-old pine (Pinus radiata) planted into pasture. No N fertilizer had been applied but the pasture contained N-fixing legumes. The sites were adjacent and received 3–6 kg ha–1 yr–1volcanic N in rain; NO3 -N leaching losses to streamwater were 5–21 kg ha–1 yr–1, and followed the order forest < pasture = pine. Soil C concentration in 0–10 cm mineral soil followed the order: pasture > pine = forest, and total N: pasture > pine > forest. Nitrogen mineralization followed the order: pasture > pine > forest for mineral soil, and was weakly related to C mineralization. Based on radiocarbon data, the indigenous forest 0–10 cm soil contained more pre-bomb C than the other soils, partly as a result of microbial processing of recent C in the surface litter layer. Heterotrophic activity appeared to be somewhat N limited in the indigenous forest soil, and gross nitrification was delayed. In contrast, the pasture soil was rich in labile N arising from N fixation by clover, and net nitrification occurred readily. Gross N cycling rates in the pine mineral soil (per unit N) were similar to those under pasture, reflecting the legacy of N inputs by the previous pasture. Change in land use from indigenous forest to pasture and pine resulted in increased gross nitrification, net nitrification and thence leaching of NO3 -N.  相似文献   

17.
We passively warmed tundra on the Antarctic Peninsula over four growing seasons and assessed its effect on dry mass and C and N stocks associated with the vascular plants Colobanthus quitensis (a cushion‐forming forb) and Deschampsia antarctica (a tussock grass), and mosses. Temperature treatments involved a warmed treatment that raised diurnal and diel canopy air temperatures by 2.3 and 1.3 °C, respectively, and a near‐ambient temperature treatment that raised diurnal and diel temperatures by 0.2 °C. These two different temperature regimes were achieved by wrapping filters around the frames to different extents and were nested within three UV treatments that filtered different solar UV wavebands. The experiment also included an ambient control treatment (unfiltered frames), and supplemental water and fertilizer treatments (applied to unfiltered frames). After four growing seasons, we collected cores of each vascular plant species and assessed the mass and C and N content of the aboveground current‐year biomass, the litter layer (which included nongreen live stems), and the organic soil horizon (which included roots). The thin nature of the organic soil horizon allowed us to sample this complete horizon and estimate near‐total ecosystem C and N stocks. A comparison of the warmed and near‐ambient temperature treatments found that warming led to greater aboveground biomass of C. quitensis, and more C in the aboveground biomass of both vascular plant species. Warming resulted in lower N concentrations of the aboveground biomass of both species. The water use efficiency of both species was greater under warming, based on their higher δ13C values. The mass of the litter layer under C. quitensis was greater under warming, and this layer contained more C and N and had a higher C : N ratio. The mass of the organic soil horizon under both species was greater under warming, and this horizon also contained more C and N. Warming also changed the species composition of the plant community – cover of C. quitensis increased while that of mosses declined. Warming resulted in the input of biomass into the system that had greater C : N ratios (and was likely more recalcitrant to decomposition) because (1) warming increased the C : N ratio of the biomass produced by both vascular plant species, (2) these inputs increased with warming because of greater biomass production, and (3) increases in C. quitensis cover led to greater biomass inputs by this species and its biomass had a greater C : N ratio than D. antarctica. Water or fertilizer supplements had few effects on aboveground biomass or C and N concentrations or pools, consistent with the relatively wet maritime climate and high soil nutrient levels of this system. Total C pools in the aboveground biomass, litter, and organic soil horizon were greater under warming. Warmed plots contained from 272 to 319 g m−2 more C than plots under near‐ambient temperatures, corresponding to a 23–34% increase in ecosystem C.  相似文献   

18.
The carbon (C) and nitrogen (N) status in forest ecosystems can change upon establishment of plantations because different tree species have different nutrient cycling mechanisms. This study was carried out to evaluate C and N status of litterfall, litter decomposition and soil in three adjacent plantations consisting of one deciduous (larch: Larix leptolepis) and two evergreen (red pine: Pinus densiflora; rigitaeda pine: P. rigida × P. taeda) species planted in the same year (1963). Both the pine plantations showed comparatively higher C input from needle litter but significantly lower N concentration and input than the larch plantation (P < 0.05). During the decomposition process, the deciduous larch needle litter showed low C concentration and C remaining in soil, but high N concentration and N remaining in soil compared to the two evergreen pine needle litters. However, the soil C and N concentration and their content at a soil depth of 0–10 cm were not affected significantly (P > 0.05) by the plantation type. These results demonstrate the existence of considerable variation in C and N status resulting from needle litter input and litter decomposition in these three plantations grown at sites with similar environmental conditions.  相似文献   

19.
Net primary production (NPP) declines as forests age, but the causal role of decreased gross primary production (GPP), or increased autotrophic respiration (Ra) is still a matter of debate. This uncertainty complicates predicted responses to future climate, as higher atmospheric carbon dioxide (CO2) concentrations may amplify the carbon (C)‐sink in temperate forests if GPP controls the decline in NPP, but increased temperatures may decrease this C‐sink if Ra controls the NPP decline. We quantified NPP in forests dominated by loblolly pine (Pinus taeda) in North Carolina, USA that varied from 14 to 115 years old. We used a sap‐flow approach to quantify summer canopy photosynthesis by pines and later‐successional hardwood trees, and measured wood CO2 efflux to investigate age‐related changes in pine Ra. Despite increasing production by later‐successional hardwoods, an 80% decline in pine NPP caused ecosystem NPP to decline with age by ~40%. The decline in pine NPP was explained by reduced stomatal conductance and photosynthesis, supporting the hypothesis that increasing hydraulic limitation and declining GPP drove the age‐related decline of NPP in this species. The difference between GPP and NPP indicated that pine Ra also declined with age; this was corroborated by measurements of reduced stem CO2 efflux with increasing age. These results indicate that C cycling in these successional temperate forests is controlled by C input from GPP, and elements of global change that increase GPP may increase the C‐sink in aging warm‐temperate pine forests.  相似文献   

20.
Many researchers have proposed that the stimulus of plant growth under elevated [CO2] observed in short-term experiments will be moderated in the longer term by a reduction in soil nitrogen (N) availability linked to decreased litter quality and/or increased litter production. However, these negative feedbacks may be offset to some extent by a stimulus in N fixation linked to increased root exudation. The aim of this modelling study is to examine how changes in litter quality/quantity and root exudation –- if they occur –- will affect the CO2 responses of net primary productivity and ecosystem carbon (C) storage on different timescales. We apply a model of C and N cycling in forest ecosystems (G’DAY) to stands of Norway spruce (Picea abies, L. Cast) growing at a N-limited experimental site at Flakaliden, Sweden, and draw the following conclusions: (1) in the absence of changes in litter quality and root exudation, the short-term CO2 stimulus of litter quantity leads to only a minimal CO2 stimulus of productivity or C storage in the medium term (≈ 20 years) and long term (≈ 200 years), because of constraints on soil N availability; (2) increasing plant nitrogen use efficiency (via a decrease in the N:C ratio of new litter) makes little impact on these results; (3) a significant CO2 response in the medium term requires a substantial decrease in the N:C ratio of older litter, when it is approaching stabilisation as soil organic matter, although the long-term CO2 response remains small; and (4) an increase in N fixation leads to a small effect on productivity in the short term, but a very large effect on both productivity and C storage in the long term. These results suggest that soil N constraints on the long-term CO2-fertilisation effect can be overcome to a significant extent only by increases in N acquisition, although only modest increases may be required. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号