首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

2.
In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As3+ than to As5+. Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.  相似文献   

3.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

4.
BackgroundLead (Pb) is ubiquitous in the environment and is an environmental genotoxic metal. Pb accumulation in the body could cause the oxidative stress.ObjectiveThis meta-analysis aimed to perform a systematic evaluation of the extent of oxidative damage in rats/mice induced by lead.MethodsAll relevant articles in English or Chinese were retrieved from Embase, PubMed, Web of Science, Medline, China National Knowledge Infrastructure, and Chinese Biological Medicine databases from their inception date until July 22, 2018.ResultsA total of 108 eligible articles were included in this study. The indicators of oxidative stress included malondialdehyde (MDA), glutathione disulfide (GSSG), reactive oxygen species (ROS), hydrogen peroxide (H2O2), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione-s-transferase (GST). The meta-analysis showed that lead significantly increased oxidants levels, such as MDA, GSSG, ROS, and H2O2 (P < 0.05), and significantly reduced the level of antioxidants, such as CAT, GPx, GR, GSH, SOD, and GST (P < 0.05). The intraperitoneal mode was more effective than water drinking mode in reducing the levels of CAT, GPx, GSH, and SOD (P < 0.05). Other factors that influenced the overall oxidative stress, including species of animals, type of tissues, and intervention dosage and time, were comprehensively evaluated.ConclusionThe results of meta-analysis indicated that mice were more sensitive to lead than rats, and intraperitoneal mode was an effective intervention mean. High doses and long periods of lead treatment can cause serious oxidative damage. Moreover, testicular was more vulnerable to lead than other tissues. These results provided scientific evidence for preventing and treating lead toxicity.  相似文献   

5.
Dietary cholesterol and aging are major risk factors to accelerate oxidation process for developing hypercholesterolemia. The major aim of this study is to elucidate the effects of rice protein on cholesterol level and oxidative stress in adult rats fed with and without cholesterol. After 2 weeks of feeding, hepatic and plasma contents of cholesterol, reduced glutathione (GSH), oxidized glutathione (GSSG), malondialdehyde (MDA) and protein carbonyl (PCO) were measured. In liver, total antioxidative capacity (T-AOC), activities of antioxidant enzymes (total superoxide dismutase, T-SOD; catalase, CAT), glutathione metabolizing enzyme activities and gene expression levels (γ-glutamylcysteine synthetase, γ-GCS; glutathione reductase, GR; glutathione peroxidase, GPx) were determined. Under cholesterol-free/enriched dietary condition, T-AOC, activities of T-SOD and CAT, glutathione metabolism related enzymes' activities and mRNA levels (γ-GCS, GR and GPx) were effectively stimulated by rice proteins as compared to caseins. Compared with caseins, rice proteins significantly increased hepatic and plasma GSH contents, whereas hepatic and plasma accumulations of MDA, PCO and GSSG were significantly reduced by rice protein-feedings. As a result, the marked reductions of cholesterol in the plasma and in the liver were observed in adult rats fed rice proteins with and without cholesterol. The present study demonstrates that the hypocholesterolemic effect of rice protein is attributable to inducing antioxidative response and depressing oxidative damage in adult rats fed cholesterol-free/enriched diets. Results suggest that the antioxidant capability involved in the hypocholesterolemic action exerted by rice protein is independent of dietary cholesterol during adult period.  相似文献   

6.
Catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activities, as well as malondialdehyde (MDA) and reduced glutathione (GSH) and oxidized glutathione (GSSG) contents, were determined during the growth of the unicellular marine alga Lingulodinium polyedrum (Stein) Dodge in batch‐cultures. CAT and APX activity peaks were detected at the beginning of algal exponential growth, although declining trends were subsequently identified in both enzymes, with a slight increase in CAT activity at the end of the experimental period. MDA content attained maximum values from day 0–3 and at the end of the experimental period (day 21), declining halfway from day 10–14. GSH and GSSG contents presented the highest values at the beginning of the growth curve, decreasing from day 3 onwards. Despite the depletion of the GSH pool, an upward trend was observed in the (GSH) (0.5 GSSG + GSH)?1 ratio, indicating that the L. polyedrum cells were able to maintain an increasing redox potential along exponential and linear growth phases in their efforts to prevent oxidative stress.  相似文献   

7.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean &#45 SEM of 270 &#45 12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

8.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

9.
Li WJ  Nie SP  Xie MY  Yu Q  Chen Y  He M 《Life sciences》2011,88(15-16):713-718
AimsGanoderma atrum polysaccharide (PSG-1), the main constituent of G. atrum, has been reported to attenuate oxidative stress in vitro. The aim of this study was to investigate whether PSG-1 has a protective effect on the brain against oxidative stress induced by d-galactose (D-gal) in vivo.Main methodsMice were intraperitoneally (i.p.) injected with D-gal (100 mg/kg body weight) once daily for 10 weeks. From the seventh week, D-gal-treated mice received PSG-1 (50, 100, or 150 mg/kg body weight) once daily for the last 4 weeks. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GSH-Rd), and the contents of glutathione (GSH), glutathione disulfide (GSSG) and malondialdehyde (MDA) in the brain were measured using different biochemical methods to evaluate the changes of the antioxidant ability in the PSG-1 treated mice. Apoptosis, reactive oxygen species (ROS) and calcium levels were determined by flow cytometry.Key findingsAdministration of PSG-1 significantly reduced apoptosis in the mouse brain in a dose-dependent manner. PSG-1-evoked reduction of apoptosis was associated with the decrease of MDA and GSSG contents, and the increase of SOD, CAT, GPx and GSH-Rd activities, and GSH contents. PSG-1 treatment was also found to attenuate ROS production and calcium accumulation.SignificancePSG-1 has a potential to be used as a novel therapeutic agent for the protection of aging brain tissue against oxidative damage by modifying the redox system and maintaining calcium homeostasis.  相似文献   

10.
Gao M  Li Y  Long J  Shah W  Fu L  Lai B  Wang Y 《Mutation research》2011,719(1-2):52-59
Benzo[a]pyrene [B(a)P] is one of the most prevalent environmental carcinogens and genotoxic agents. However, the mechanisms of B(a)P-induced oxidative damage in cervical tissue are still not clear. The present study was to investigate the oxidative stress and DNA damage in cervix of ICR female mice induced by acute treatment with B(a)P. Oxidative stress was assayed by analysis of malondialdehyde (MDA), superoxide anion and H(2)O(2), and antioxidant enzymes. The alkaline single-cell electrophoresis (SCGE) was used to measure DNA damage. The contents of MDA and glutathione (GSH), and the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were significantly increased in cervix 24, 48 and 72h after B(a)P treatment of a single dose of 12.5 and 25mg/kg, while GSH, CAT, SOD and GST had no significant difference with the dose of 50mg/kg B(a)P at post-treatment time 48 and 72h except for SOD activity at 48h which was significant. The maximum values of SOD, CAT, GST and GSH were peaked at 24h and then decreased gradually while GPx activities and MDA levels persisted for up to 72h. Superoxide anion, H(2)O(2) and DNA damage changed similarly as the activity of SOD, CAT or GST. Additionally, increases of formamidopyrimidine DNA glycosylase (FPG) specific DNA damage were observed and can be greatly rescued by vitamin C pretreatment. Overall, B(a)P demonstrated a time- and dose- related oxidative stress and DNA damage in cervix.  相似文献   

11.
It has been reported that oxidative stress may play a role in the pathogenesis of dementia of the Alzheimer type (AD) and the cerebral ischemia which causes vascular dementia (VD). We measured malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities in blood samples from patients with AD and VD and in healthy non-demented controls (CTR) which similar ages to the patients, in order to evaluate the degree of oxidative stress in patients with AD and VD. A sample of 150 subjects consisting of 50 patients with AD; 50 patients with VD and 50 CTR, aged from 65 to 85 years on, was analyzed. Most of the changes observed were in SOD activity and MDA levels. Catalase activity were least affected. Significant differences were observed in SOD and GR activity between males and females in CRT and in patients with AD, but not in VD. We have found a decrease in antioxidant enzymes activities (SOD, CAT, GPx and GR) in patients with AD and VD and significant differences were observed between CRT and AD patients for ages from 65 to 74, 75 to 84 and from 85 years to 94 years in SOD activity and MDA levels (P < 0.001). MDA levels increase with age in VD, AD and CTR. No significant variation with respect to sex were detected, but significant variations in MDA levels were detected between CRT and patients with VD and AD (P < 0.001). We conclude that oxidative stress plays an important role in the brain damage for both AD and VD, being observed higher levels of oxidative stress for AD that for VD.  相似文献   

12.
Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an indicator of oxidative stress, and mean break per cell (b/c) values, which is an indicator of decreased DNA repair efficiency, were found to be significantly increased in patients compared to normal controls (P?<?0.05) whereas ascorbic acid and GSH were found to be lower among patients than the control group. It has been found that elevated oxidative stress decreased antioxidant level and decreased DNA repair efficiency can contribute to the development of CAD. This study also showed that high MDA, low ascorbic acid and GSH were significantly associated with high b/c value.  相似文献   

13.
The aim of this study was to investigate the possible relationship between serum total sialic acid (TSA) concentration, recently shown to be a cardiovascular risk factor, and lipid and protein oxidation and antioxidant status and the severity of coronary artery disease (CAD) according to the obstructive vessel number in patients. The study was carried out on a total of 200 patients (142 men and 58 women) who were hospitalized for elective coronary angiographic evaluation with complaint of typical angina pectoris. According to the results of angiography, 150 patients had angiographically proven CAD (CAD group) and 50 patients had a history suggestive of angina pectoris but normal coronary angiograms (control group). The CAD group was further divided into single-, double- and triple-vessel disease groups according to the number of vessels involved. Lipid parameters were determined by routine laboratory methods. Plasma malondialdehyde (MDA) and vitamin E concentrations were determined by high-performance liquid chromatography. TSA and other oxidant and antioxidant parameters were studied spectrophotometrically. Our results demonstrated significant increases both in TSA levels and in indicators of oxidative stress in the patients with CAD compared with the controls. However, antioxidant parameters were decreased in the patients with CAD. We found strong positive correlations between TSA and plasma MDA, Delta-MDA which represents the degree of oxidative modification of apolipoprotein B-containing lipoproteins, serum protein carbonyls and apolipoprotein B and weak correlations between TSA and low density lipoprotein cholesterol, triacylglycerol, paraoxonase, glutathione peroxidase (GPx), vitamin C and vitamin E. In conclusion, TSA is related to markers of lipid and protein oxidation, paraoxonase and GPx activities, vitamin C and E levels and the severity of CAD.  相似文献   

14.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

15.
Present study examines effects of curcumin and vitamin E on oxidative stress parameters, antioxidant defence enzymes and oxidized (GSSG) and reduced glutathione (GSH) levels in testis of L-thyroxine (T4)-induced hyperthyroid rats. The oxidative stress in T4-treated rat testis was evident from elevation in oxidative stress parameters such as lipid peroxide and protein carbonyl contents, decrease in superoxide dismutase (SOD) and catalase (CAT) activities and increase in glutathione peroxidase (GPx) activity. This is accompanied with decrease in number and mortality of epididymal sperms. When the T4-treated rats were fed with vitamin E and/or curcumin, the lipid peroxide and protein carbonyl contents in crude homogenates of testes decreased to normal level. Treatment of curcumin and/or vitamin E to T4-treated rats resulted in elevation of SOD level in postmitochondrial fraction (PMF) and mitochondrial fraction (MF) and CAT in PMF, with decreased GPx activity in MF. However, curcumin or vitamin E was unable to change GPx activity alone but in together they elevated the GPx in PMF of T4-treated rat testis. Both the antioxidants are incapable of producing significant changes in GSH:GSSG ratio of PMF of T4-treated rats. In MF, GSH:GSSG ratio elevated and decreased respectively by curcumin and vitamin E treatments to T4-treated rats, however, in together these antioxidants caused an elevated GSH:GSSG ratio with a value less than when vitamin E given alone to T4-treated rats. Vitamin E not the curcumin elevates total sperm count and percentage of live sperm impaired by hyperthyroid state. In summary, both vitamin E and curcumin are efficient in protecting testis from oxidative stress generated by T4 mainly in restoring antioxidant enzymes to the level of euthyroid animals up to some extent but vitamin E is more efficient than curcumin.  相似文献   

16.
Glutathione status and antioxidant enzymes in various types of rat skeletal muscle were studied after an acute bout of exercise (Ex) at different intensities. Glutathione (GSH) and glutathione disulfide (GSSG) concentrations were the highest in soleus (SO) muscle, followed by those in deep (DVL) and then superficial (SVL) portions of vastus lateralis. In DVL, but not in SO or SVL, muscle GSH increased proportionally with Ex intensity and reached 1.8 +/- 0.08 mumol/g wet wt compared with 1.5 +/- 0.03 (P < 0.05) in resting controls (R). GSSG in DVL was increased from 0.10 +/- 0.01 mumol/g wet wt in R to 0.14 +/- 0.01 (P < 0.05) after Ex. Total glutathione (GSH + GSSG) contents in DVL were also significantly elevated with Ex, whereas GSH/GSSG ratio was unchanged. Activities of GSH peroxidase (GPX), GSSG reductase (GR), and catalase (CAT) were significantly higher in SO than in DVL and SVL, but there was no difference in superoxide dismutase activity between the three muscle types. Furthermore, Ex at moderate intensities elicited significant increases in GPX, GR, and CAT activities in DVL muscle. None of the antioxidant enzymes was affected by exercise in SO. It is concluded that rat DVL muscle is particularly vulnerable to exercise-induced free radical damage and that a disturbance of muscle GSH status is indicative of an oxidative stress.  相似文献   

17.
The effect of aging on the glutathione redox system was evaluated in this study. For this purpose, we determined reduced glutathione (GSH) and oxidized glutathione (GSSG) in whole blood, glutathione peroxidase (GPx) and glutathione reductase (GSSGR) in erythrocytes and selenium (Se) in plasma in 176 healthy individuals. We also calculated GSH/GSSG molar ratios. These subjects were divided into five groups: group 1 (n=25; 0.2-1 years old); group 2 (n=28; 2-11 years old); group 3 (n=23; 12-24 years old); group 4 (n=40; 25-40 years old); group 5 (n=60; 41-69 years old). GSH levels in groups 1 and 5 were significantly lower than the other groups (p<0.001). Conversely, GSSG levels were significantly high in these periods (p<0.001). The GSH/GSSG molar ratio was found to be low both in the first year of life and in the oldest group (p<0.001, respectively). GPx activity in group 5 was increased as compared to the other groups (p<0.001). GSSGR activity was significantly lower in the oldest groups than in the other groups (p<0.001). Se levels were found to be low in the oldest group (p<0.001). Selenium levels of women in group 5 were significantly high as compared to the men (p<0.01). We found negative correlations between age and GSH levels (r=0.402; p<0.001), selenium levels (r=0.454; p<0.001), GSH/GSSG molar ratio (r=0.557; p<0.001) and GSSGR activity (r=0.556; p<0.001). There were positive correlations between age and GPx (r=0.538; p<0.001) and GSSG level (r=0.551; p<0.001). In conclusion, our findings show that the glutathione redox system is affected by age. Oxidative stress increases during the aging process. There is no effect of aging on the glutathione redox system according to sex except for the Se level.  相似文献   

18.
Long-duration or damaging exercise initiates reactions that resemble the acute phase response to infection and induces neutrophil priming for oxidative activity. Our objective was to establish the status of the antioxidant defences and of the oxidative equilibrium in the neutrophils of sportsmen prior to and after intense physical exercise. Nine voluntary male professional cyclists participated in this study. The exercise was a cycling mountain stage (171 km) and the cyclists took a mean ±SEM of 270 ±12 min to complete it. We determined the activities of catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), the levels and activity of superoxide dismutase (SOD), the concentrations of ascorbate, glutathione and glutathione disulphide (GSSG) and DNA levels in neutrophils. The cycling stage decreased enzyme activities expressed per DNA units: CAT (33%), SOD (38%), GPx (65%); increased ascorbate concentration in neutrophils and decreased the GSH/GSSG ratio and the enzyme activities expressed per DNA units. Neutrophils could contribute to plasma antioxidant defences against oxidative stress induced by exercise because they probably provide antioxidant enzymes and ascorbate.  相似文献   

19.
In this article, oxidative stress and enzymic-non-enzymic antioxidants status were investigated in children with acute pneumonia. Our study included 28 children with acute pneumonia and 29 control subjects. The age ranged from 2 to 11 years (4.57+/-2.13 years) and 2 to 12 years (4.89+/-2.22 years) in the study and control groups, respectively. Whole blood malondialdehyde (MDA) and reduced glutathione (GSH), serum beta-carotene, retinol, vitamin C, vitamin E, catalase (CAT), ceruloplasmin (CLP), total bilirubin, erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels were studied in all subjects. There was a statistically significant difference between the groups for all parameters except for serum CAT. Whole blood MDA, serum CLP and total bilirubin levels were higher in the study group than those of the control group. However, SOD, GPx, beta-carotene, retinol, vitamin C, vitamin E and GSH levels were lower in the study group compared with the control group. All antioxidant vitamin activities were decreased in children with acute pneumonia. Our study demonstrated that oxidative stress was increased whereas enzymic and non-enzymic antioxidant activities were significantly decreased in children with acute pneumonia.  相似文献   

20.
Swimming has relevant physiological changes in farmed fish, although the potential link between swimming and oxidative stress remains poorly studied. We investigated the effects of different medium-term moderate swimming conditions for 6 h on the antioxidant status of gilthead seabream (Sparus aurata), analyzing the activity of enzymes related to oxidative stress in the liver and skeletal red and white muscle. Forty fish were induced to swim individually with the following conditions: steady low (SL, 0.8 body length (BL)·s−1), steady high (SH, 2.3 BL·s−1), oscillating low (OL, 0.2–0.8 BL·s−1) and oscillating high (OH, 0.8–2.3 BL·s−1) velocities, and a non-exercised group with minimal water flow (MF, < 0.1 BL·s−1). All swimming conditions resulted in lower activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) in the liver compared to the MF group, while steady swimming (SL and SH) led to higher reduced glutathione/oxidized glutathione ratio (GSH/GSSG) compared to the MF condition. Swimming also differently modulated the antioxidant enzyme activities in red and white muscles. The OH condition increased lipid peroxidation (LPO), catalase (CAT) and glutathione peroxidase (GPx) activities in the red muscle, decreasing the GSH/GSSG ratio, whereas the SL condition led to increased GSH. Oscillating swimming conditions (OL and OH) led to lower CAT activity in the white muscle, although GPx activity was increased. The GSH/GSSG ratio in white muscle was increased in all swimming conditions. Liver and skeletal muscle antioxidant status was modulated by exercise, highlighting the importance of adequate swimming conditions to minimize oxidative stress in gilthead seabream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号