首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exotic woody weed plants are a very serious threat to seed dispersed by ungulate in the tropical forest of Asia. The ungulates in Point Calimere Wildlife Sanctuary (PCWS) are a significant role in native indigenous seed dispersal. The exotic woody weed tree Prosopis juliflora prevalence distributed in the PCWS and they might potentially alter the native medicinal plant species. In the present investigation, we have assessed the seed dispersal by ungulates in PCWS from January to March 2017. Four different ungulate species were selected to understand their seed dispersal rate of different plant species in selected sanctuary. This investigation was planned to confirm the seed dispersal by ungulates of blackbuck, spotted deer, wild boar and feral horse. Among the four different ungulates tested, the maximum numbers of pellets collected from blackbuck and no seed found in their pellets. The low quantities of pellets were collected from wild boar and this study has recorded medium-sized ungulates which dispersed variety of plant. However, the dispersal of the seed of medicinal plants were not considerably high and relatively moderate percentage of seeds dispersal occurred in medium-sized ungulates like wild boar and spotted deer. P. juliflora had 100% seed germination rate were observed from the faecal samples of wild boar and feral horse. The control seed achieved maximum seedling rate than the ungulates seeds.  相似文献   

2.
Feeding experiments were carried out to investigate the digestive fate of transgenic DNA and novel protein in wild boar applying polymerase chain reaction (PCR) and immunodiagnostic techniques. Furthermore, the dispersal of viable maize and rapeseed (endozoochory) was studied. A diet containing conventional rapeseed, and either genetically modified (GM) maize expressing Cry1Ab protein (Bt176) or non-GM isogenic maize was offered. By conventional and quantitative PCR both chloroplast-specific plant DNA (rubisco) and cry1Ab gene fragments were detected only in gastrointestinal content. Using an enzyme-linked immunosorbent assay (ELISA) positive signals of immunoactive Cry1Ab protein were detected in digesta samples. Analysis of endozoochory showed that excreted maize seeds retain their germination capacity only in extremely rare cases and no intact rapeseed was found in faeces. A possible dispersal of viable seeds by wild boars is highly unlikely.  相似文献   

3.
Seed dispersal is a crucial process for the dynamics and maintenance of plant populations. Free-ranging animals are effective dispersal vectors because they can move between similar habitats and transport seeds into favourable environments. Dung samples from two species of common free-ranging mammals—deer and wild boar—were used to study endozoochorous dispersal of seeds in a military training area in western Bohemia. The area was abandoned after WWII, and the military training area was established in 1953. The vegetation consists of shrublands and dry grasslands. Data on the local species pool of grassland herbs and forbs were collected to compare the characteristics of dispersed versus non-dispersed plants. Deer and wild boar dispersed 84 plant species; however, species composition of seedlings emerging from dung samples showed significant differences between dispersal vectors and notable change across the growing season. 80% of all seedlings extracted from the dung samples belonged to stinging nettle, Urtica dioica. From trait analyses, seeds of endozoochorous plants had a higher longevity index in the soil seed bank than non-endozoochorous plants and more often possessed a mucilaginous surface. Our results show that deer and boar are successful, though not substitutable dispersers.  相似文献   

4.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

5.
Endozoochory is a prominent form of seed dispersal in tropical dry forests. Most extant megafauna that perform such seed dispersal are ungulates, which can also be seed predators. White‐tailed deer (Odocoileus virginianus) is one of the last extant megafauna of Neotropical dry forests, but whether it serves as a legitimate seed disperser is poorly understood. We studied seed dispersal patterns and germination after white‐tailed deer gut passage in a tropical dry forest in southwest Ecuador. Over 23 mo, we recorded ca 2000 seeds of 11 species in 385 fecal samples. Most seeds belonged to four species of Fabaceae: Chloroleucon mangense, Senna mollissima, Piptadenia flava, and Caesalpinia glabrata. Seeds from eight of the 11 species dispersed by white‐tailed deer germinated under controlled conditions. Ingestion did not affect germination of C. mangense and S. mollissima, whereas C. glabrata showed reduced germination. Nevertheless, the removal of fruit pulp resulting from ingestion by white‐tailed deer could have a deinhibition effect on germination due to seed release. Thus, white‐tailed deer play an important role as legitimate seed dispersers of woody species formerly considered autochorous. Our results suggest that more research is needed to fully understand the ecological and evolutionary effects of the remaining extant megafauna on plant regeneration dynamics in the dry Neotropics.  相似文献   

6.
For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer (Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

7.
The seed dispersal mechanisms and regeneration of various forest ecosystems can benefit from the actions of carnivores via endozoochory. This study was aimed to evaluate the role of carnivores in endozoochory and diploendozoochory, as well as their effect on seed viability, scarification, and germination in two forest ecosystems: temperate and tropical dry forest. We collected carnivore scat in the Protected Natural Area of Sierra Fría in Aguascalientes, Mexico, for 2 years to determine the abundance and richness of seeds dispersed by each carnivore species, through scat analysis. We assessed seed viability through optical densitometry using X‐rays, analyzed seed scarification by measuring seed coat thickness using a scanning electron microscope, and evaluated seed germination in an experiment as the percentage of seeds germinated per carnivore disperser, plant species, and forest type. In the temperate forest, four plant species (but mainly Arctostaphylos pungens) were dispersed by four mammal species. The gray fox dispersed the highest average number of seeds per scat (66.8 seeds). Bobcat dispersed seeds through diploendozoochory, which was inferred from rabbit (Sylvilagus floridanus) hair detected in their scats. The tropical dry forest presented higher abundance of seeds and richness of dispersed plant species (four species) than in the temperate forest, and the coati dispersed the highest number of seeds (8,639 seeds). Endozoochory and diploendozoochory did not affect viability in thick‐testa seeds (1,480 µm) in temperate forest and thin‐testa seeds (281 µm) in tropical dry forest. Endozoochory improved the selective germination of seeds. Nine plant species were dispersed by endozoochory, but only one species (Juniperus sp.) by diploendozoochory. These results suggest that carnivores can perform an important ecological function by dispersing a great abundance of seeds, scarifying these seeds causing the formation of holes and cracks in the testas without affecting viability, and promoting the selective germination of seeds.  相似文献   

8.
Mutualisms are one of the main forces shaping species spatial patterns at all geographic scales. In generalised mutualisms, however, the dependence among partners is highly variable in time and space, and therefore, the effect of diffuse mutualisms on species geographic distributions is unclear. Myrmecochorous seeds in Brazilian semi‐arid vegetation are dispersed by several ant species. However, large‐seeded species are especially dependent on dispersal by the giant ant Dinoponera quadriceps, which is the main disperser of such diaspores and the species that provide the longest dispersal distance among ant species in this system. Hence, we hypothesise that the presence of D. quadriceps shapes the distribution of large‐seeded, but not the distribution of small‐seeded myrmecochorous plant species. To evaluate this hypothesis, we modelled the potential distribution of two large‐seeded (which are predominantly dispersed by D. quadriceps) and two small‐seeded (which are barely dispersed by D. quadriceps) Euphorbiaceae species and the potential distribution of D. quadriceps. We analysed the relationship between the occurrence suitability of D. quadriceps and the occurrence suitability of plant species. We found that the potential distribution of both large‐seeded and small‐seeded myrmecochorous plants was unrelated to D. quadriceps occurrence suitability. It means that the disproportional benefits provided by high‐quality disperser at local scales may not emerge at broader geographical scales. In Caatinga vegetation, diaspores are submitted to strong abiotic filters that constraint seed germination and establishment after the dispersal phase. Such abiotic filters may dilute the initial benefit provided by long‐distance dispersers. Therefore, we suggest that in dry environments like the Caatinga, the benefits of long‐distance removals should be outweighed by the risk of reach new habitats with unfavourable conditions for germination and establishment.  相似文献   

9.
10.
Seed dispersal by invertebrates is mostly external (e.g. by ants). However, internal dispersal (endozoochory) seems to be uncommon due to size limitations. Slugs are generalist herbivores and increasing evidence suggests that they often disperse seeds. Nevertheless, we know very little on the consequences for plant recruitment. Here, we assess the effect of slug seed passage on germination and early seedling establishment of a set of nine common plant species with limited dispersal capabilities (unassisted or ant dispersed). Germination trials were performed under natural conditions (NW of Spain). Size was a clear limitation for seed ingestion: smaller seeds were eaten more readily, whereas only the largest slugs could swallow the largest seeds. All ingested seeds were voided undamaged. Only not-ingested seeds (the biggest) were damaged, with chewing marks in the surface and 0.8% (N = 250) were broken. In some cases, slugs ate the elaiosomes but discarded the seeds. Slug seed passage had an overall positive effect on total germination and sped it up in two species. Elaiosome removal by slugs had also a positive effect in Ulex europaeus seeds (+160%). However, slugs had no effect on early seedling survival and growth of the study species. Our results show that slugs are effective dispersers in terms of seed treatment in the digestive track. However, according to their reduced movement range (in the range of tens of metres; as shown by other studies), they can only provide rather limited dispersal as compared to vertebrate dispersers. This can be nonetheless significant for species with limited dispersal, e.g. unassisted and ant-dispersed plants, for which they act as non-standard dispersers.  相似文献   

11.
Studies on predation by the wolf (Canis lupus) have often reported contradictory results about the role of prey density and vulnerability on wolf prey use. We investigated dietary response and prey selection by wolves in a high-density and multi-species ungulate community, analysing scats collected over a period of 11 years in the Casentinesi Forests, Italy. The second most abundant species, wild boar (Sus scrofa), was found to be the main wolf prey, and we did not observe any dietary response of wolves to variations in the density of either primary or secondary prey species. Selection patterns were uniform throughout the study period. Wolves strongly selected for wild boar piglets, while roe deer (Capreolus capreolus) fawns and adults, red deer (Cervus elaphus) adults and fallow deer (Dama dama) adults were avoided. Wolf preference for wild boar was inversely density dependent. Within each species, juveniles were preferred to adults. Medium-sized, young individuals of both wild boar and roe deer were optimal prey, although with different selection patterns related to the different anti-predator strategies adopted by each prey species. The results of this study suggest that in productive ecosystems with high density and high renewal rates of prey, selection patterns by wolves are determined by prey vulnerability, which is connected to prey age and body size. The different patterns of wild boar versus cervids use by wolf across Europe seems to be related to their relative abundances, while the strong selection of wild boar in Italian Apennines with respect to the more frequent avoidance in central-eastern Europe is better explained by higher piglet productivity and smaller body size of adults boar in Mediterranean temperate forests.  相似文献   

12.
完全的竞争者不能共存,物种间生态位分化是同域物种长期稳定共存的基础。不同物种在同一分布区时间生态位的分化对其共存至关重要。为研究同域分布物种的共存机制,在2018年11月到2021年7月利用远红外相机监测技术对穆棱东北红豆杉国家级自然保护区同域分布的野猪(Sus scrofa)和狍(Capreolus pygargus)进行了野外监测研究,并利用核密度估计方法和雅各布斯选择指数(JSI)对日活动节律和一段时间内的活动周期选择进行了评估,同时还利用非参数检验评估了2个物种的活动与月光周期的关系。研究结果表明,狍不管在全年还是在不同的季节,日活动节律均为双峰模式,而野猪的活动模式表现出明显的可塑性,在全年和冷季为单峰型,暖季为双峰型,二者在日活动节律上的重叠程度较高(Dhat>0.59),在暖季的重叠系数最高(Dhat=0.65)。此外,在时间段的选择上,狍在全年和冷季更喜欢在黎明和黄昏活动(0.170.32),而野猪活动在全年和冷季对白天和黄昏的选择更多(JSI>0.3),暖季则更喜欢在白天活动(J...  相似文献   

13.
Aim Large‐bodied vertebrates often have a dramatic role in ecosystem function through herbivory, trampling, seed dispersal and nutrient cycling. The iconic Galápagos tortoises (Chelonoidis nigra) are the largest extant terrestrial ectotherms, yet their ecology is poorly known. Large body size should confer a generalist diet, benign digestive processes and long‐distance ranging ability, rendering giant tortoises adept seed dispersers. We sought to determine the extent of seed dispersal by Galápagos tortoises and their impact on seed germination for selected species, and to assess potential impacts of tortoise dispersal on the vegetation dynamics of the Galápagos. Location Galápagos, Ecuador. Methods To determine the number of seeds dispersed we identified and counted intact seeds from 120 fresh dung piles in both agricultural and national park land. To estimate the distance over which tortoises move seeds we used estimated digesta retention times from captive tortoises as a proxy for retention times of wild tortoises and tortoise movement data obtained from GPS telemetry. We conducted germination trials for five plant species to determine whether tortoise processing influenced germination success. Results In our dung sample, we found intact seeds from > 45 plant species, of which 11 were from introduced species. Tortoises defecated, on average, 464 (SE 95) seeds and 2.8 (SE 0.2) species per dung pile. Seed numbers were dominated by introduced species, particularly in agricultural land. Tortoises frequently moved seeds over long distances; during mean digesta retention times (12 days) tortoises moved an average of 394 m (SE 34) and a maximum of 4355 m over the longest recorded retention time (28 days). We did not find evidence that tortoise ingestion or the presence of dung influenced seed germination success. Main conclusions Galápagos tortoises are prodigious seed dispersers, regularly moving large quantities of seeds over long distances. This may confer important advantages to tortoise‐dispersed species, including transport of seeds away from the parent plants into sites favourable for germination. More extensive research is needed to quantify germination success, recruitment to adulthood and demography of plants under natural conditions, with and without tortoise dispersal, to determine the seed dispersal effectiveness of Galápagos tortoises.  相似文献   

14.
Very few studies on ungulates address issues of inter-specific synchrony in population responses to environmental variation such as climate. Depending on whether annual variation in performance of ungulate populations is driven by direct or indirect (trophic) interactions, very different predictions regarding the pattern of inter-specific synchrony can be derived. We compared annual autumn body mass variation in roe deer (Capreolus capreolus) and wild boar (Sus scrofa) from Poland over the period 1982–2002, and related this to variation in winter and summer climate and plant phenological development [the Normalized Difference Vegetation Index (NDVI), derived from satellites]. Roe deer fawns (∼1.3 kg increase from year 1982 to 2002) and yearlings both increased markedly in mass over years. There was also an increase for wild boar mass over years (∼4.2 kg increase for piglets from 1982 to 2002). Despite our failure to link annual body mass to spring or winter conditions or the NDVI, the body mass of roe deer and wild boar fluctuated in synchrony. As this was a field roe deer population, and since wild boar is an omnivore, we suggest this may be linked to annual variation and trends in crop structure (mainly rye). We urge future studies to take advantage of studying multiple species in order to gain further insight into processes of how climate affect ungulate populations. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
Most microalgal species are geographically widespread, but little is known about how they are dispersed. One potential mechanism for long‐distance dispersal is through birds, which may transport cells internally (endozoochory) and deposit them during, or in‐between, their migratory stopovers. We hypothesize that dinoflagellates, in particular resting stages, can tolerate bird digestion; that bird temperature, acidity, and retention time negatively affect dinoflagellate viability; and that recovered cysts can germinate after passage through the birds’ gut, contributing to species‐specific dispersal of the dinoflagellates across scales. Tolerance of two dinoflagellate species (Peridiniopsis borgei, a warm‐water species and Apocalathium malmogiense, a cold‐water species) to Mallard gut passage was investigated using in vitro experiments simulating the gizzard and caeca conditions. The effect of in vitro digestion and retention time on cell integrity, cell viability, and germination capacity of the dinoflagellate species was examined targeting both their vegetative and resting stages. Resting stages (cysts) of both species were able to survive simulated bird gut passage, even if their survival rate and germination were negatively affected by exposure to acidic condition and bird internal temperature. Cysts of A. malmogiense were more sensitive than P. borgei to treatments and to the presence of digestive enzymes. Vegetative cells did not survive conditions of bird internal temperature and formed pellicle cysts when exposed to gizzard‐like acid conditions. We show that dinoflagellate resting cysts serve as dispersal propagules through migratory birds. Assuming a retention time of viable cysts of 2–12 h to duck stomach conditions, cysts could be dispersed 150–800 km and beyond.  相似文献   

16.
Dispersal limitation between habitat fragments is a known driver of landscape-scale biodiversity loss. In Europe, agricultural intensification during the twentieth century resulted in losses of both grassland habitat and traditional grassland seed dispersal vectors such as livestock. During the same period, populations of large wild herbivores have increased in the landscape. Usually studied in woodland ecosystems, these animals are found to disperse seeds from grasslands and other open habitats. We studied endozoochorous seed dispersal by roe deer (Capreolus capreolus) in fragmented grasslands and grassland remnants, comparing dispersed subcommunities of plant species to those in the established vegetation and the seed bank. A total of 652 seedlings of 67 species emerged from 219 samples of roe deer dung. This included many grassland species, and several local grassland specialists. Dispersal had potentially different effects on diversity at different spatial scales. Almost all sites received seeds of species not observed in the vegetation or seed bank at that site, suggesting that local diversity might not be dispersal limited. This pattern was less evident at the landscape scale, where fewer new species were introduced. Nonetheless, long-distance dispersal by large wild herbivores might still provide connectivity between fragmented habitats within a landscape in the areas in which they are active. Finally, as only a subset of the available species were found to disperse in space as well as time, the danger of future biodiversity loss might still exist in many isolated grassland habitats.  相似文献   

17.
Free-ranging large herbivores can influence vegetation dynamics through seed dispersal within and among habitats. We investigated the content of germinable seeds in the dung (endozoochory) of red deer (Cervus elaphus L.), the most ubiquitous wild ungulate throughout the European Alps, and compared the results with the species composition of the vegetation type in which the dung was dropped. The study was conducted in the subalpine zone of the Swiss National Park and included the three most important vegetation types for red deer: (i) intensively grazed short-grass vegetation, (ii) less intensively grazed tall-grass vegetation, and (iii) adjacent conifer forest understory vegetation. Seeds of 47 species, mostly from small-seeded herbaceous species, were recorded in dung samples with three species accounting for 65% of germinated seeds. Our results confirmed the hypotheses that (H1) small-seeded species were more likely to occur in red deer dung than larger-seeded species, though seed size was unrelated to seed density, (H2) red deer dung contained mostly seeds from short-grass vegetation, with seed species composition in dung collected from any vegetation type being most similar to species composition of relevés from short-grass vegetation, and (H3) seeds were less likely to be dispersed between vegetation types than within vegetation types, with dung dropped in short-grass vegetation having a different species composition and containing over twice as many seeds as dung dropped in the other two vegetation types. These results collectively support the hypothesis that red deer endozoochory contributes to maintaining short-grass vegetation, the favoured grazing sites of hinds in the Swiss National Park, by increasing propagule pressure of seeds from herbaceous forage species adapted to endozoochory relative to other species and especially those from later stages of secondary succession.  相似文献   

18.
The two-phase dispersal event in which dung beetles move seeds after endozoochory is often assumed to be advantageous for plant regeneration. Because seeds are expected to end up in favourable and safe germination sites, it is considered as an example of directed dispersal. However, literature so far is restricted to tropical rain forest ecosystems, while data for temperate regions are lacking. In this study, the effect of dung beetles on seedling establishment of endozoochorically dispersed seeds is evaluated for a temperate grassland ecosystem. We performed a field experiment in which cages excluded dung beetles from horse and cattle dung samples with mixed-in grass seeds. Seed germination from these samples was significantly higher than that from samples which were accessible to dung beetles. This indicates that the effect of dung beetles on short-term seedling establishment was negative, which contrasts with the patterns found for large-seeded species used in tropical studies. This is most likely attributed to the lack of roller species and the larger depth at which tunneling Geotrupes species bury seeds.  相似文献   

19.
The seed dispersal effectiveness framework allows assessing mutualistic services from frugivorous animals in terms of quantity and quality. Quantity accounts for the number of seeds dispersed and quality for the probability of recruitment of dispersed seeds. Research on this topic has largely focused on the spatial patterns of seed deposition because seed fates often vary between microhabitats due to differences in biotic and abiotic factors. However, the temporal dimension has remained completely overlooked despite these factors—and even local disperser assemblages—can change dramatically during long fruiting periods. Here, we test timing effects on seed dispersal effectiveness, using as study case a keystone shrub species dispersed by frugivorous birds and with a fruiting period of 9 months. We evaluated quantity and quality in different microhabitats of a Mediterranean forest and different periods of the fruiting phenophase. We identified the bird species responsible for seed deposition through DNA barcoding and evaluated the probability of seedling recruitment through a series of field experiments on sequential demographic processes. We found that timing matters: The disperser assemblage was temporally structured, seed viability decreased markedly during the plant's fruiting phenophase, and germination was lower for viable seeds dispersed in the fruiting peak. We show how small contributions to seed deposition by transient migratory species can result in a relevant effectiveness if they disperse seeds in a high‐quality period for seedling recruitment. This study expands our understanding of seed dispersal effectiveness, highlighting the importance of timing and infrequent interactions for population and community dynamics.  相似文献   

20.
Endozoochory by exotic mammalian herbivores could modify vegetation composition by facilitating the dispersal and establishment of exotic and native plant species. We examined the potential for endozoochoric dispersal of native and exotic plants by exotic hog deer (Axis porcinus) in south-eastern Australia. We quantified the germinable seed content of hog deer faecal pellets collected in five vegetation types within a 10,500-ha study area that was representative of their Australian range. Twenty exotic and 22 native species germinated from hog deer faecal pellets and significantly more native species germinated compared to exotic species. Seedlings of the encroaching native shrub Acacia longifolia var. sophorae emerged, but no native trees emerged and the percentage of grasses that germinated was low (11%). The species composition of germinants was similar among the five vegetation types. We estimated that the hog deer population in our study area could potentially disperse >130,000 viable seeds daily. Our study shows how an exotic mammal can disperse seeds from both native and invasive plants and highlights the need for endozoochory to be considered more widely in studies assessing the impacts of exotic mammals on plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号