首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

2.
3.
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.  相似文献   

4.
This study investigated how dietary habits vary with lake characteristics in a fish species that exhibits extensive morphological and ecological variability, the Arctic charr Salvelinus alpinus. Iceland is a hotspot of geological activity, so its freshwater ecosystems vary greatly in physical and chemical attributes. Associations of dietary items within guts of charr were used to form prey categories that reflect habitat-specific feeding behavior. Six prey categories were defined and dominated by snails (Radix peregra), fish (Gasterosteus aculeatus), tadpole shrimp (Lepidurus arcticus), chironomid pupae, pea clam (Pisidium spp.), and the cladoceran Bosmina sp.. These reflected different combinations of feeding in littoral stone, offshore benthic, and limnetic habitats. Certain habitat-specific feeding strategies consistently occurred alongside each other within lakes. For example, zooplanktivory occurred in the same lakes as consumption from offshore habitats; piscivory occurred in the same lakes as consumption from littoral benthic habitats. Redundancy analyses (RDA) were used to investigate how lake environment was related to consumption of different prey categories. The RDA indicated that piscivory exhibited by Arctic charr was reduced where brown trout were abundant and lakes were shallow, greater zooplanktivory occurred at lower latitudes and under decreased nutrient but higher silicon dioxide concentrations, and benthic resource consumption was associated with shallower lakes and higher altitudes. This study showed that trends previously observed across fish species were supported at the intraspecific level, indicating that a single species with flexible dietary habits can fill functional roles expected of multiple species in more diverse food webs.  相似文献   

5.
研究利用保安湖沿岸带与敞水区两种生境中高营养级捕食者(达氏鲌与红鳍原鲌)的碳(δ13C)、氮(δ15N)稳定同位素数据,通过稳定同位素质量平衡混合模型、非度量多维尺度分析(NMDS)等方法,分析了两种生境中鲌类食物来源的差异.结果表明,两种生境中鲌类食物来源基本一致,且食物来源较为广泛,包括沿岸带饵料鱼类、敞水区饵料鱼...  相似文献   

6.
The Arctic charr Salvelinus alpinus populations of the subarctic lakes Takvatn and Fjellfrøsvatn, north Norway, concentrated in the littoral zones (0–15 m) of the lakes during the entire winter (December to May) despite very low temperatures (0·2 and 0·7° C). High prey availability, low predation and competition and comparatively better light under snow and ice in shallow compared with deep water are probable reasons. At ice break in June, all Arctic charr moved to the profundal zone for a brief period, probably in response to the sudden light increase and a profundal resource peak of chironomid pupae. In the summer, the Arctic charr are found in the pelagic, profundal and littoral zones of the lakes. These populations therefore perform regular habitat shifts between the littoral zone in the winter, the profundal zone at ice break and the whole lake in the summer and autumn. The fish fed continuously during winter despite the cold water and the poor light. Amphipods and chironomid larvae dominated the diet. Catch per unit effort, numbers of stomachs with food and food intake rates varied with the subarctic light cycle but were lowest after the winter solstice. The winter assimilation of energy was about equal to the standard metabolism in Takvatn but was higher in Fjellfrøsvatn. The assimilation increased in both lakes under the spring ice in May. The habitat choice, diet and energy assimilation indicate that the Arctic charr is well adapted to the extreme winter conditions of subarctic lakes.  相似文献   

7.
Omnivory has been implicated in both diffusing and intensifying the effects of consumer control in food chains. Some have postulated that the strong, community level, top-down control apparent in lakes is not expressed in terrestrial systems because terrestrial food webs are reticulate, with high degrees of omnivory and diverse plant communities. In contrast, lake food webs are depicted as simple linear chains based on phytoplankton-derived energy. Here, we explore the dynamic implications of recent evidence showing that attached algal (periphyton) carbon contributes substantially to lake primary and secondary productivity, including fish production. Periphyton production represents a cryptic energy source in oligotrophic and mesotrophic lakes that is overlooked by previous theoretical treatment of trophic control in lakes. Literature data demonstrate that many fish are multi-chain omnivores, exploiting food chains based on both littoral and pelagic primary producers. Using consumer-resource models, we examine how multiple food chains affect fourth-level trophic control across nutrient gradients in lakes. The models predict that the stabilizing effects of linked food chains are strongest in lakes where both phytoplankton and periphyton contribute substantially to production of higher trophic levels. This stabilization enables a strong and persistent top down control on the pelagic food chain in mesotrophic lakes. The extension of classical trophic cascade theory to incorporate more complex food web structures driven by multi-chain predators provides a conceptual framework for analysis of reticulate food webs in ecosystems.  相似文献   

8.
Ecological communities are often characterised by many species occupying the same trophic level and competing over a small number of vital resources. The mechanisms maintaining high biodiversity in such systems are still poorly understood. Here, we revisit the role of prey selectivity by generalist predators in promoting biodiversity. We consider a generic tri‐trophic food web, consisting of a single limiting resource, a large number of primary producers and a generalist predator. We suggest a framework to describe the predator functional response, combining food selectivity for distinctly different functional prey groups with proportion‐based consumption of similar prey species. Our simulations reveal that intermediate levels of prey selectivity can explain a high species richness, functional biodiversity, and variability among prey species. In contrast, perfect food selectivity or purely proportion‐based food consumption leads to a collapse of prey functional biodiversity. Our results are in agreement with empirical phytoplankton rank‐abundance curves in lakes.  相似文献   

9.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

10.
Stable coexistence of Arctic charr and whitefish does occur in a number of native lake fish communities in Scandinavia. Even so, whitefish introductions into Arctic charr lakes have resulted in serious decline and possibly local extinction of Arctic charr. In this article, we analyze the habitat use and diet of the two species in five Norwegian lakes differing in basin shape and environmental conditions. In two of the lakes, both species are native, and appear to live in a relatively stable coexistence. Here, whitefish mainly occupy the littoral and upper pelagic zone, while Arctic charr live in the deeper habitats. Diets are generally quite different in terms of the zooplankton species eaten. In the three other lakes, either whitefish or both species have been introduced. In the shallowest lake, habitat segregation is similar to that seen in the pristine lakes, although Arctic charr appears to be on the brink of extinction. In the remaining two lakes, however, Arctic charr dominates, and occurs in higher numbers than whitefish in all the habitats. Our observations indicate that coexistence of the two species in oligotrophic and relatively pristine lakes requires an extensive profundal zone to serve as a refugium for Arctic charr. If the littoral zone is rendered inaccessible or unprofitable for whitefish due to dominance of a third competitor or predator, or as a result of lake regulation, then Arctic charr may be the dominant species.  相似文献   

11.
12.
13.
Introduced species can alter the topology of food webs. For instance, an introduction can aid the arrival of free-living consumers using the new species as a resource, while new parasites may also arrive with the introduced species. Food-web responses to species additions can thus be far more complex than anticipated. In a subarctic pelagic food web with free-living and parasitic species, two fish species (arctic charr Salvelinus alpinus and three-spined stickleback Gasterosteus aculeatus) have known histories as deliberate introductions. The effects of these introductions on the food web were explored by comparing the current pelagic web with a heuristic reconstruction of the pre-introduction web. Extinctions caused by these introductions could not be evaluated by this approach. The introduced fish species have become important hubs in the trophic network, interacting with numerous parasites, predators and prey. In particular, five parasite species and four predatory bird species depend on the two introduced species as obligate trophic resources in the pelagic web and could therefore not have been present in the pre-introduction network. The presence of the two introduced fish species and the arrival of their associated parasites and predators increased biodiversity, mean trophic level, linkage density, and nestedness; altering both the network structure and functioning of the pelagic web. Parasites, in particular trophically transmitted species, had a prominent role in the network alterations that followed the introductions.  相似文献   

14.

Small nearshore fishes are an important part of lacustrine and functional diversity and link pelagic and benthic habitats by serving as prey for larger nearshore and offshore fishes. However, the trophic complexity of these small nearshore fishes is often unrecognized and detailed studies of their role in food webs are lacking. Here, we examined niche space patterns of small nearshore fish species using Bayesian analyses of carbon and nitrogen stable isotope data in nine freshwater lakes that are among the largest lakes in Minnesota. We found considerable variability in niche areas within species and high variability in niche overlap across species. At the assemblage level, niche overlap (average diet overlap of all species pairs at a lake) decreased as whole-lake species richness increased, possibly indicating a greater degree of resource specialization in more speciose lakes. Overall fish niche space was weakly but significantly related to niche space of their invertebrate prey. Although nearshore benthic resources contributed to fish diets in all lakes, all fish species also had non-negligible and variable contributions from pelagic zooplankton. This inter- and intraspecific variability in trophic niche space likely contributes to the multi-level trophic complexity, functional diversity, and potentially food web resilience to ecosystem changes.

  相似文献   

15.
16.
Subsequent to their introduction in the 1950s, Arctic charr Salvelinus alpinus have been able to establish a self-sustaining population that has adapted to the unique conditions of the sub-Antarctic Kerguelen Islands. Here, 48 individuals (198–415 mm) were caught with gillnets and their basic biology and feeding ecology were examined using stable isotope analysis. The Lac des Fougères population split use of littoral and pelagic resources evenly, although larger fish relied more heavily on littoral production and appear to follow the size-dependent life history habitat template seen in many Scandinavian lakes where smaller sized individuals occupy the pelagic zone and larger individuals dominate the littoral habitat. In Kerguelen, Arctic charr mature at the same ages (5.6 years) as Arctic charr in both sub-Arctic and Arctic lakes. Although mortality was average in comparison to comparator sub-Arctic lakes, it was high in comparison to Arctic lakes. Maximal age (>7+) was at the lower end of the range typically seen in sub-Arctic lakes. Although they inhabit a resource-poor environment, Kerguelen Arctic charr showed no evidence of cannibalism. Thus, while Arctic charr can survive and reproduce in the relatively unproductive Kerguelen lake environments, survival and growth nevertheless appear to be traded off against survival and longevity. The uniqueness of the population location and the recency of its introduction suggest that further monitoring of the population has the potential to yield valuable insights into both the adaptability of the species and its likely responses to ongoing large-scale environmental change as represented by climate change.  相似文献   

17.
Different functional groups of generalist predators may complement each other in controlling prey populations; but intraguild interactions, common among generalist predators, may also reduce the strength of top–down control. In natural communities greater alterations to ecosystem function are expected if a whole functional group declines in abundance or is lost. Therefore studying functional group diversity is important for predicting effects of predator loss. We studied the top–down impact of web‐building spiders, hunting spiders and ants, which are highly abundant generalist predators in most terrestrial ecosystems, on prey from the herbivore and decomposer system of a grassland food web. The density of the three predator groups was manipulated by continuous removal in a three‐factorial designed field experiment, which was carried out for two years. We found no positive effect of increasing predator functional group richness on prey control. However there was evidence for strong composition effects between the functional groups. The presence of ants in predator assemblages reduced the prey suppression through mostly trait‐mediated intraguild interactions, while hunting and web‐building spiders contributed additively to prey suppression and reduced the density of herbivore and decomposer prey by 50–60%. A trophic cascade on plant biomass triggered by web‐builders and hunting spiders was diminished at levels of higher predator group diversity. In conclusion, our experiments showed that intraguild interactions strongly influence the strength of top–down control by generalist predators. Among spiders there was evidence for a positive relation between functional group richness and prey suppression but the overall outcome strongly depended on the occurrence of interference, driven by trait‐mediated indirect interactions.  相似文献   

18.
Physical, chemical and biological processes facilitate cross-habitat connections in lakes, prompting food webs to be supported by different subsidies. We tested the hypothesis that the pelagic food web is subsidized by littoral resources and fish foraging behaviour plays a major role in carbon flux and on food web structure in shallow hypereutrophic lakes. We performed a fish diet and carbon and nitrogen isotope analyses to predict the linkage between littoral and pelagic habitats in three shallow hypereutrophic lakes. Lakes differed in morphology, fetch, macrophyte composition and width of the littoral zone. δ13C signals of seston differed among lakes, but were similar to other producers. Macroinvertebrates and fish carbon signatures were more enriched in the lake co-dominated by emergent and submerged vegetation. Fish foraging behaviour indicates that more than the 80% of the carbon that sustain adult fish was channelled from the littoral. In conclusion, littoral carbon were relevant and sustain, in part, food web in these shallow lakes. Factors like the extension of the littoral zone, lake morphometry, and the dominance of multi-chain omnivorous fish facilitate the connection among lake compartments and the transference of littoral carbon to lake food web.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号