首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2 uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2 from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal.  相似文献   

2.
Although biological nitrogen removal via nitrite is recognized as one of the cost-effective and sustainable biological nitrogen removal processes, nitrite accumulation has proven difficult to achieve in continuous processes treating low-strength nitrogenous wastewater. Partial nitrification to nitrite was achieved and maintained in a lab-scale completely stirred tank reactor (CSTR) treating real domestic wastewater. During the start-up period, sludge with ammonia-oxidizing bacteria (AOB) but no nitrite-oxidizing bacteria (NOB) was obtained by batch operation with aeration time control. The nitrifying sludge with the dominance of AOB was then directly switched into continuous operation. It was demonstrated that partial nitrification to nitrite in the continuous system could be repeatedly and reliably achieved using this start-up strategy. The ratio of dissolved oxygen to ammonium loading rate (DO/ALR) was critical to maintain high ammonium removal efficiency and nitrite accumulation ratio. Over 85% of nitrite accumulation ratio and more than 95% of ammonium removal efficiency were achieved at DO/ALR ratios in an optimal range of 4.0–6.0 mg O2/g N d, even under the disturbances of ammonium loading rate. Microbial population shift was investigated, and fluorescence in situ hybridization analysis indicated that AOB were the dominant nitrifying bacteria over NOB when stable partial nitrification was established.  相似文献   

3.
Altlhough ammonia oxidation and ammonia-oxidizing bacteria (AOB) have been extensively studied, nitrite oxidation and nitrite-oxidizing bacteria (NOB) are still not well understood. In this article, the effect of organic matter on NOB and heterotrophic bacteria was investigated with functional performance analysis and bacterial community shift analysis. The results showed that at low concentrations of initial sodium acetate [initial sodium acetate (ISA) = 0.5 or 1 g/L], the nitrite removal rate was higher than that obtained under autotrophic conditions and the bacteria had a single growth phase, whereas at high ISA concentrations (5 or 10 g/L), continuous aerobic nitrification and denitrification occurred in addition to higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different concentrations of ISA; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). The reasons that nitrite removal rate increased with supplement of organic matters were discussed.  相似文献   

4.
A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation. Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2 uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2 from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal.  相似文献   

5.
The goal of this research was to investigate the simultaneous occurrence of nitrification and denitrification by activated sludge exposed to volatile fatty acids (VFAs) during aerobic wastewater treatment using a single-stage reactor. A mixture of VFAs was spiked directly into a continuous-stirred tank reactor (CSTR) to assess subsequent impacts on nitrite removal, nitrate formation, CO(2) fixation, total bacterial density, and dominant nitrite oxidizing bacteria (NOB) concentration (i.e., Nitrospira). The activity of the periplasmic nitrate reductase (NAP) enzyme and the presence of nap gene were also measured. A rapid decrease in the nitrate formation rate (>70% reduction) was measured for activated sludge exposed to VFAs; however, the nitrite removal rate was not reduced. The total bacterial density and Nitrospira concentration remained essentially constant; therefore, the reduction in nitrate formation rate was likely not due to heterotrophic uptake of nitrogen or to a decrease in the dominant NOB population. Additionally, VFA exposure did not impact microbial CO(2) fixation efficiency. The activity of NAP enzyme increased in the presence of VFAs suggesting that nitrate produced as a consequence of nitrite oxidation was likely further reduced to gaseous denitrification products via catalysis by NAP. Little, if any, nitrogen was discharged in the aqueous effluent of the CSTR after exposure to VFAs demonstrating that activated sludge treatment yielded compounds other than those typically produced solely by nitrification.  相似文献   

6.
Aeration phase length control and step-feed of wastewater are used to achieve nitrogen removal from wastewater via nitrite in sequencing batch reactors (SBR). Aeration is switched off as soon as ammonia oxidation is completed, which is followed by the addition of a fraction of the wastewater that the SBR receives over a cycle to facilitate denitrification. The end-point of ammonia oxidation is detected from the on-line measured pH and oxygen uptake rate (OUR). The method was implemented in an SBR achieving biological nitrogen and phosphorus removal from anaerobically pre-treated abattoir wastewater. The degree of nitrite accumulation during the aeration period was monitored along with the variation in the nitrite oxidizing bacteria (NOB) population using fluorescence in situ hybridization (FISH) techniques. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, which significantly reduced the carbon requirement for nutrient removal. Model-based studies show that the establishment of the nitrite pathway was primarily the result of a gradual reduction of the amount of nitrite that is available to provide energy for the growth of NOB, eventually leading to the elimination of NOB from the system.  相似文献   

7.
Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine.  相似文献   

8.
短程硝化启动运行中功能菌群变化研究   总被引:3,自引:0,他引:3  
【目的】短程硝化-厌氧氨氧化是可实现的最短生物脱氮工艺,短程硝化是实现该工艺的重要环节和必要条件。【方法】采用序批式反应器(SBR)来实现短程硝化过程的启动和稳定运行,并对该过程中的相关功能菌群变化进行检测分析。【结果】通过控制低DO浓度(<1 mg/L)和逐步提高氨氮进水负荷,可抑制氨氧化细菌(NOB)菌群增殖并促进亚硝酸氧化菌(AOB)菌群规模显著扩大,实现短程硝化过程的启动和稳定运行。在氨氮进水负荷为0.055 kg/(m3.d)时,平均氨氮去除容积负荷和污泥负荷可达到0.043kg/(m3.d)和0.16 kg/(kg.d),平均亚硝酸盐积累率可达到83.4%。在短程硝化启动和稳定运行过程中,NOB菌群密度从2.0×105CFU/mL降至1.5×104CFU/mL,相对丰度从5.51%降至2.14%;AOB菌群密度从4.5×104CFU/mL增加至1.5×107CFU/mL,相对丰度从0.18%增加至7.25%。【结论】AOB菌群规模的扩大是实现短程硝化和氨氮去除能力提高的主要原因,同时较高的进水氨氮浓度和负荷也会造成亚硝化活性的抑制。  相似文献   

9.
季节性温度变化对CANON型潮汐流人工湿地脱氮的影响   总被引:1,自引:0,他引:1  
探究了温度的季节性变化对基于亚硝化的全程自养脱氮(CANON)型潮汐流人工湿地(TFCW)脱氮性能及其微生物特性的影响。CANON型TFCW中的脱氮微生物群落在温度的季节性变化下会发生不同程度的改变,其脱氮途径及性能随之会出现周期性的波动。填料层温度在20.0 ℃以上时对TFCW脱氮性能及其中的优势脱氮菌群无显著影响,CANON作用是系统脱氮的主要途径。当填料层温度低于20.0 ℃时,厌氧氨氧化菌丰度与活性显著降低,在9.3~20.0 ℃时,亚硝酸盐氧化菌(NOB)的增殖及其活性的提高使TFCW中脱氮的主要途径由CANON作用演替为硝化/反硝化作用,系统对总氮(TN)的去除率仅为(34.8±13.0)%;在2.2~9.0 ℃时,TFCW中的厌氧氨氧化菌在受到抑制的同时仍保持着对NOB和反硝化菌群的相对竞争优势,系统脱氮重新依赖于CANON作用,其对TN的去除率为(54.8±4.8)%。该研究可为CANON型TFCW工艺的优化及工程化应用提供参考。  相似文献   

10.
以改性沸石、聚乙烯醇、海藻酸钠作为固定化载体材料,硼酸和氯化钙作为交联剂,采用吸附-包埋-交联法将硝化细菌和好氧反硝化细菌复合固定化制备成微生物小球.通过复合菌配比实验,考察其对氨氮的去除率以及亚硝酸盐和硝酸盐的累积量;对制成的固定化小球做四因素三水平的正交实验,考察不同条件下对氨氮的去除率.结果表明,硝化细菌和好氧反硝化细菌配比为3:2时,氨氮去除率最高达82.32%,亚硝酸盐和硝酸盐的累积量为0.032mg·L-1和0.053 mg·L-1;通过正交实验,确定沸石投加量为2g·100mL-1、温度为30℃、pH值为7.5、振荡速度为130r·min-1时,对氨氮达到最好的去除效果,去除率达90.31%,此法制得的小球机械性能和吸水性能良好.  相似文献   

11.
Membrane‐aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long‐term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real‐time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10‐fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r‐strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal.  相似文献   

12.
In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run on municipal wastewater as well as from two lab-scale reactors. Fluorescent in situ hybridization (FISH) and quantitative PCR (qPCR) showed that Nitrobacter was the dominant NOB in acetate-fed aerobic granules. In the conventional system, both Nitrospira and Nitrobacter were present in similar amounts. Remarkably, the NOB/AOB ratio in aerobic granular sludge was elevated but not in the conventional treatment plant suggesting that the growth of Nitrobacter within aerobic granular sludge, in particular, was partly uncoupled from the lithotrophic nitrite supply from AOB. This was supported by activity measurements which showed an approximately threefold higher nitrite oxidizing capacity than ammonium oxidizing capacity. Based on these findings, two hypotheses were considered: either Nitrobacter grew mixotrophically by acetate-dependent dissimilatory nitrate reduction (ping-pong effect) or a nitrite oxidation/nitrate reduction loop (nitrite loop) occurred in which denitrifiers reduced nitrate to nitrite supplying additional nitrite for the NOB apart from the AOB.  相似文献   

13.
Poultry manure contains high levels of ammonia, which result in a suboptimal bioconversion to methane in anaerobic digesters (AD). A simultaneous process of nitrification, Anammox and denitrification (SNAD) in a continuous granular bubble column reactor to treat the anaerobically digested poultry manure was implemented. Thus, two strategies to achieve high efficiencies were proposed in this study: (1) ammonia overload to suppress nitrite oxidizing bacteria (NOB) and (2) gradual adaptation of the partial nitrification–Anammox (PN–A) biomass to organic matter. During the NOB-suppression stage, microbial and physical biomass characterizations were performed and the NOB abundance decreased from 31.3% to 3.3%. During the adaptation stage, with a nitrogen loading rate of 0.34 g L−1 d−1, a hydraulic retention time of 1.24 d and an influent COD/N ratio of 2.63 ± 0.02, a maximum ammonia and total nitrogen removal of 100% and 91.68% were achieved, respectively. The relative abundances of the aerobic and the anaerobic ammonia-oxidizing bacteria were greater than 35% and 40% respectively, during the study. These strategies provided useful design tools for the efficient removal of nitrogen species in the presence of organic matter.  相似文献   

14.
Constructed wetlands (CWs) are considered to be important sources of nitrous oxide (N2O). In order to investigate the effect of influent COD/N ratio on N2O emission and control excess emission from nitrogen removal, free water surface microcosm wetlands were used and fed with different influent. In addition, the transformation of nitrogen was examined for better understanding of the mechanism of N2O production under different operating COD/N ratios. It was found that N2O emission and the performance of microcosm wetlands were significantly affected by COD/N ratio of wastewater influent. Strong relationships exist between N2O production rate and nitrite (r = 0.421, p < 0.01). During denitrification process, DO concentration crucially influences N2O production rate. An optimal influent COD/N ratio was obtained by adjusting external carbon sources for most effective N2O emission control and best performance of the CWs in nitrogen removal from wastewater. It is concluded that under the operating condition of COD/N ratio = 5, total N2O emission is minimum and the microcosm wetland is most effective in wastewater nitrogen removal.  相似文献   

15.
Shortcut nitrogen removal, that is, removal via formation and reduction of nitrite rather than nitrate, has been observed in membrane-aerated biofilms (MABs), but the extent, the controlling factors, and the kinetics of nitrite formation in MABs are poorly understood. We used a special MAB reactor to systematically study the effects of the dissolved oxygen (DO) concentration at the membrane surface, which is the biofilm base, on nitrification rates, extent of shortcut nitrification, and microbial community structure. The focus was on anoxic bulk liquids, which is typical in MAB used for total nitrogen (TN) removal, although aerobic bulk liquids were also studied. Nitrifying MABs were grown on a hollow-fiber membrane exposed to 3 mg N/L ammonium. The MAB intra-membrane air pressure was varied to achieve different DO concentrations at the biofilm base, and the bulk liquid was anoxic or with 2 g m(-3) DO. With 2.2 and 3.5 g m(-3) DO at the biofilm base, and with an anoxic bulk-liquid, the ammonium fluxes were 0.75 and 1.0 g N m(-2) day(-1), respectively, and nitrite was the main oxidized nitrogen product. However, with membrane DO of 5.5 g m(-3), and either zero or 2 g m(-3) DO in the bulk, the ammonium flux was around 1.3 g N m(-2) day(-1), and nitrate flux increased significantly. For all experiments, the cell density of ammonium oxidizing bacteria (AOB) was relatively uniform throughout the biofilm, but the density of nitrite oxidizing bacteria (NOB) decreased with decreasing biofilm DO. Among NOB, Nitrobacter spp. were dominant in biofilm regions with 2 g m(-3) DO or greater, while Nitrospira spp. were dominant in regions with less than 2 g m(-3) DO. A biofilm model, including AOB, Nitrobacter spp., and Nitrospira spp., was developed and calibrated with the experimental results. The model predicted the greatest extent of nitrite formation (95%) and the lowest ammonium oxidation flux (0.91 g N m(-2) day(-1)) when the membrane DO was 2 g m(-3) and the bulk liquid was anoxic. Conversely, the model predicted the lowest extent of nitrite formation (40%) and the highest ammonium oxidation flux (1.5 g N m(-2) day(-1)) when the membrane-DO and bulk-DO were 8 g m(-3) and 2 g m(-3), respectively. The estimated kinetic parameters for Nitrospira spp., revealed a high affinity for nitrite and oxygen. This explains the dominance of Nitrospira spp. over Nitrobacter spp. in regions with low nitrite and oxygen concentrations. Our results suggest that shortcut nitrification can effectively be controlled by manipulating the DO at the membrane surface. A tradeoff is made between increased nitrite accumulation at lower DO, and higher nitrification rates at higher DO.  相似文献   

16.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

17.
This study aimed to find optimal operation conditions for nitrogen removal from high strength slaughterhouse wastewater at 11 °C using the intermittently aerated sequencing batch reactors (IASBRs) so as to provide an engineering control strategy for the IASBR technology. Two operational parameters were examined: (1) loading rates and (2) aeration rates. Both the two parameters affected variation of DO concentrations in the IASBR operation cycles. It was found that to achieve efficient nitrogen removal via partial nitrification–denitrification (PND), “DO elbow” point must appear at the end of the last aeration period. There was a correlation between the ammonium oxidizing bacteria (AOB)/nitrite oxidizing bacteria (NOB) ratio and the average DO concentrations in the last aeration periods; when the average DO concentrations in the last aeration periods were lower than 4.86 mg/L, AOB became the dominant nitrifier population, which benefited nitrogen removal via PND. Both the nitrogen loading rate and the aeration rate influenced the population sizes of AOB and NOB. To accomplish efficient nitrogen removal via PND, the optimum aeration rate (A, L air/min) applied can be predicted according to the average organic loading rates based on mathematical equations developed in this study. The research shows that the amount of N2O generation in the aeration period was reduced with increasing the aeration rate; however, the highest N2O generation in the non-aeration period was observed at the optimum aeration rates.  相似文献   

18.
In this study, combination of a partial nitritation reactor, using immobilized polyethylene glycol (PEG) gel carriers, and a continuous stirred granular anammox reactor was investigated for nitrogen removal from livestock manure digester liquor. Successful nitrite accumulation in the partial nitritation reactor was observed as the nitrite production rate reached 2.1 kg-N/m3/day under aerobic nitrogen loading rate of 3.8 kg-N/m3/day. Simultaneously, relatively high free ammonia concentrations (average 50 mg-NH3/l) depressed the activity of nitrite oxidizing bacteria with nitrate concentration never exceeding 3% of TN concentration in the effluent of the partial nitritation reactor (maximum 35.2 mg/l). High nitrogen removal rates were achieved in the granular anammox reactor with the highest removal rate being 3.12 kg-N/m3/day under anaerobic nitrogen loading rate of 4.1 kg-N/m3/day. Recalcitrant organic compounds in the digester liquor did not impair anammox reaction and the SS accumulation in the granular anammox reactor was minimal. The results of this study demonstrated that partial nitritation–anammox combination has the potential to successfully remove nitrogen from livestock manure digester liquor.  相似文献   

19.
一株好氧反硝化菌的分离鉴定及其除氮特性   总被引:10,自引:0,他引:10  
【目的】生物除氮中反硝化菌具有重要的作用,需氧反硝化菌研究较少,有着很好的应用潜力,本研究主要从环境样品中分离具有高效去除铵氮和亚硝酸盐氮活性的好氧反硝化菌,并对其分类及除氮特性进行研究。【方法】以高效去除铵氮、除亚硝酸盐氮和好氧反硝化能力为主要指标,从富营养化的池塘淤泥水和工厂污泥样品中进行菌株分离筛选。通过生理生化特点以及16S rRNA序列分析对活性最好的菌株进行初步鉴定。在好氧条件下,分别以NO-3-N、NH+4-N和NO-2-N作为唯一氮源,考察菌株的好氧反硝化特性、去除铵氮和亚硝酸盐氮特性,以及不同初始pH值、温度、碳源、摇床转速对该菌去除铵氮和亚硝酸盐氮特性的影响。【结果】得到的细菌中,以菌株C-4的活性最好,其16S rRNA序列与不动杆菌的同源性达99%,结合生理生化特点,初步确定菌株C-4属于不动杆菌属(Acinetobacter sp.)。以柠檬酸钠作为碳源,30℃、120 r/min振荡培养,种龄为18 h,用初始pH为8.5的200 mg/L NH +4-N培养基和初始pH为7.5的100 mg/L NO -2-N培养基进行测定,分别培养15 h与12 h,净除氮率分别达到65.8%和47.8%。【结论】从鱼塘水样中分离到一株好氧反硝化菌C-4,初步鉴定为不动杆菌属的一个种(Acinetobacter sp.),具有较高的反硝化特性和高效去除铵氮与亚硝酸盐氮的能力,在处理实际池塘污水时中,净除氮率可达73.04%以上。  相似文献   

20.
Achieving sustainable partial nitrification to nitrite has been proven difficult in treating low strength nitrogenous wastewater. Real-time aeration duration control was used to achieve efficient partial nitrification to nitrite in a sequencing batch reactor (SBR) to treat low strength domestic wastewater. Above 90% nitrite accumulation ratio was maintained for long-term operation at normal condition, or even lower water temperature in winter. Partial nitrification established by controlling aeration duration showed good performance and robustness even though encountering long-term extended aeration and starvation period. Process control enhanced the successful accumulation of ammonia oxidizing bacteria (AOB) and washout of nitrite oxidizing bacteria (NOB). Scanning electron microscope observations indicated that the microbial morphology showed a shift towards small rod-shaped clusters. Fluorescence in situ hybridization (FISH) results demonstrated AOB were the dominant nitrifying bacteria, up to 8.3 ± 1.1% of the total bacteria; on the contrary, the density of NOB decreased to be negligible after 135 days operation since adopting process control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号