首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of de novo insertion of the medaka fish transposable element Tol2   总被引:2,自引:0,他引:2  
Koga A  Hori H 《Genetics》2000,156(3):1243-1247
Tol2 is a terminal-inverted-repeat transposable element of the medaka fish Oryzias latipes. It is a member of the hAT (hobo/Activator/Tam3) transposable element family that is distributed in a wide range of organisms. We here document direct evidence for de novo insertion of this element. A Tol2 clone marked with the bacterial tetracycline-resistance gene was microinjected into fertilized eggs together with a target plasmid, and the plasmid was recovered from embryos. The screening of plasmid molecules after transformation into Escherichia coli demonstrated transposition of tet into the plasmid and, by inference, precise insertion of Tol2 in medaka fish cells. De novo excision of Tol2 has previously been demonstrated. The present study provides direct evidence that the Tol2 element has the entire activity necessary for cut-and-paste transposition. Some elements of the mariner/Tc1 family, another widespread group, have already been applied to development of gene tagging systems in vertebrates. The Tol2 element of the hAT family, having different features from mariner/Tc1 family elements, also has potential as an alternative gene tagging tool in vertebrates.  相似文献   

2.
We have previously identified three naturally occurring mutations in the medaka fish tyrosinase gene caused by transposable element insertions. Tyrib is one of these, containing the Tol2 element in the promoter region. Its homozygous carriers exhibit a weak oculocutaneous albino phenotype. We report here spontaneous reversion of the albino phenotype to the wild‐type pigmentation, associated with excision of the Tol2 element. The newly arising mutant gene is inherited in the Mendelian fashion. Thus, oculocutaneous albinism is not strictly irreversible, at least in this organism and the results also indicate that the insertion of the Tol2 element is the main, and possibly the only, cause of the ib albinism. Importantly our data also suggest that medaka fish possess an active transposase.  相似文献   

3.
Kawakami K  Noda T 《Genetics》2004,166(2):895-899
The Tol2 transposable element of the Japanese medaka fish belongs to the hAT family of transposons including hobo of Drosophila, Ac of maize, and Tam3 of snapdragon. To date, Tol2 is the only natural transposon in vertebrates that has ever been shown to encode a fully functional transposase. It has not been known, however, whether Tol2 can transpose in vertebrates other than fish. We report here transposition of Tol2 in mouse embryonic stem (ES) cells. We constructed a transposon donor plasmid containing a nonautonomous Tol2 element with the neomycin resistance gene and a helper plasmid capable of expressing the transposase and introduced the donor plasmid with various amounts of the helper plasmid by electroporation into mouse ES cells. The number of G418-resistant ES colonies increased as the amount of helper plasmid was increased, in a dose-dependent manner, indicating that the transposase activity elevated the integration efficiency. These G418-resistant ES colonies were cloned and the structure of the junction of the integrated Tol2 element and the genomic DNA was analyzed by inverse PCR. In those clones, Tol2 was surrounded by mouse genomic sequences and an 8-bp direct repeat was created adjacent to both ends of Tol2, indicating that Tol2 was integrated in the genome through transposition. The Tol2 transposon system is thus active in mouse as well as in fish. We propose that it should be used as a genetic tool to develop novel gene transfer, transgenesis, and mutagenesis methods in mammals.  相似文献   

4.
Urasaki A  Mito T  Noji S  Ueda R  Kawakami K 《Gene》2008,425(1-2):64-68
The Tol2 element is a transposon found from a genome of a vertebrate, a small teleost medaka fish. Tol2 encodes a gene for a transposase which is active in vertebrate animals so far tested; for instance, in fish, frog, chicken and mammals, and transgenesis methods using Tol2 have been developed in these model vertebrates. However, it has not been known whether Tol2 can transpose in animals other than vertebrates. Here we report transposition of Tol2 in an invertebrate Drosophila melanogaster. First, we injected a transposon donor plasmid containing a Tol2 construct and mRNA encoding the Tol2 transposase into Drosophila eggs, and found that the Tol2 construct could be excised from the plasmid. Second, we crossed the injected flies, raised the offspring, and found that the Tol2 construct was integrated into the genome of germ cells and transmitted to the next generation. Finally, we constructed a Tol2 construct containing the white gene and injected the transposon donor plasmid and the transposase mRNA into fertilized eggs from the white mutant. We analyzed their offspring, and found that G1 flies with wild type red eyes could be obtained from 35% of the injected fly. We cloned and sequenced 34 integration loci from these lines and showed that these insertions were indeed created through transposition and distributed throughout the genome. Our present study demonstrates that the medaka fish Tol2 transposable element does not require vertebrate-specific host factors for its transposition, and also provides a possibility that Tol2 may be used as a new genetic tool for transgenesis and genome analysis in Drosophila.  相似文献   

5.
电穿孔介导质粒DNA肿瘤内转移抑制恶性肿瘤生长与转移   总被引:3,自引:0,他引:3  
利用携带绿色荧光蛋白(green fluorescent protein, GFP)编码基因的表达质粒,测试电穿孔方法介导目的基因活体组织内转移的效率并优化电击参数.在此基础上采用电穿孔技术直接将编码白介素12(IL-12)、白介素2(IL-2)、粒单细胞克隆刺激因子(GM-CSF)等免疫调节因子或反义血管内皮细胞生长因子121(VEGF121)、可溶性血管内皮细胞膜受体(sFlk-1及ExTek)等血管生成抑制因子表达质粒转移至肿瘤局部.实验结果表明电穿孔介导GFP表达质粒肌肉内转移的效率较高,GFP可在肌细胞内持续高水平表达3周以上,而在肿瘤细胞内只能表达4~6 d,但高电压短脉冲电击组肿瘤内GFP阳性细胞数比低电压长脉冲组高2.68倍.多次电击介导IL-12表达质粒转移至肿瘤组织内,可有效地抑制小鼠膀胱癌BTT-gfp、人乳腺癌MCF-7及肝癌SMMC 7721-gfp的生长.MCF-7对血管生成抑制因子基因转移治疗较敏感,单独应用反义VEGF121、sFlk-1或ExTek即显示明确的治疗效果.SMMC 7721-gfp单独应用sFlk-1有效.小鼠膀胱癌对单独应用反义VEGF121、sFlk-1或ExTek治疗效果不理想,但联合应用sFlk-1和ExTek仍然可以有效地抑制肿瘤生长与转移,甚至使肿瘤缩小或消失.提示电穿孔技术是一项高效、安全、经济的体内基因转移方法.  相似文献   

6.
Kodama K  Takagi S  Koga A 《Heredity》2008,101(3):222-227
Tol1 is a DNA-based transposable element residing in the genome of the medaka fish Oryzias latipes, and has been proven to be transposed in various vertebrate species, including mammals. This element belongs to the hAT (hobo/Activator/Tam3) transposable element family, whose members are distributed in a wide range of organisms. It is thus possible that Tol1 is mobile in organisms other than vertebrates. We here show that transposition of this element occurs in the nematode Caenorhabditis elegans. A donor plasmid containing a Tol1 element and a helper plasmid carrying the transposase gene were delivered into gonad cells and, after several generations of culturing, were recovered from worms. PCR analysis of the donor plasmid, using primers that encompassed the Tol1 element, revealed excision of the Tol1 portion from the plasmid. Analysis of genomic DNA of the worms by the inverse PCR method provided evidence that Tol1 had been integrated into the C. elegans chromosomes. Vertebrates and C. elegans are phylogenetically distantly related organisms in that the former are deuterostomes and the latter a protostome animal. Our results indicate (1) the transposition reaction of the Tol1 element requires, besides the transposase, no factors from host cells, or (2) the host factors, even if required, are those that are common to protostomes and deuterostomes. The results also have significance for the development of a gene transfer vector and other biotechnology tools for C. elegans.  相似文献   

7.
Tol1和Tol2是在青鳉基因组中发现的具有自主活性的DNA转座子,而Tol1转座子的自主活性是新近才发现的,因此对它的报道较少。较之Tol2,Tol1可以携带更大片段的DNA进行转座,且Tol1的转座不受转座酶"过量表达抑制"的影响。研究已证实,Tol1转座子在秀丽线虫、斑马鱼、爪蟾和人等多种生物中具有转座活性。因此,在动物转基因和基因功能研究等方面有重要的应用前景。从Tol1转座子的结构特征、转座机制和作为基因转移载体的优点,以及应用研究等方面进行了简要的综述。  相似文献   

8.
9.
10.
Fishes expressing a fluorescent protein in germ cells are useful to perform germ cell transfer experiments for conservation study. Nonetheless, no such fish has been generated in endangered endemic fishes. In this study, we tried to produce a fish expressing Venus fluorescent protein in germ cells using Honmoroko (Gnathopogon caerulescens), which is one of the threatened small cyprinid endemic to the ancient Lake Biwa in Japan. To achieve germ cell-specific expression of Venus, we used piwil1 (formally known as ziwi) promoter and Tol2 transposon system. Following the co-injection of the piwil1-Venus expression vector and the Tol2 transposase mRNA into fertilized eggs, presumptive transgenic fish were reared. At 7 months of post-fertilization, about 19% (10/52) of the examined larvae showed Venus fluorescence in their gonad specifically. Immunohistological staining and in vitro spermatogenesis using gonads of the juvenile founder fish revealed that Venus expression was detected in spermatogonia and spermatocyte in male, and oogonia and stage I and II oocytes in female. These results indicate that the Tol2 transposon and zebrafish piwil1 promoter enabled gene transfer and germ cell-specific expression of Venus in G. caerulescens. In addition, in vitro culture of juvenile spermatogonia enables the rapid validation of temporal expression of transgene during spermatogenesis.  相似文献   

11.
Urasaki A  Morvan G  Kawakami K 《Genetics》2006,174(2):639-649
The Tol2 element is a naturally occurring active transposable element found in vertebrate genomes. The Tol2 transposon system has been shown to be active from fish to mammals and considered to be a useful gene transfer vector in vertebrates. However, cis-sequences essential for transposition have not been characterized. Here we report the characterization of the minimal cis-sequence of the Tol2 element. We constructed Tol2 vectors containing various lengths of DNA from both the left (5') and the right (3') ends and tested their transpositional activities both by the transient excision assay using zebrafish embryos and by analyzing chromosomal transposition in the zebrafish germ lineage. We demonstrated that Tol2 vectors with 200 bp from the left end and 150 bp from the right end were capable of transposition without reducing the transpositional efficiency and found that these sequences, including the terminal inverted repeats (TIRs) and the subterminal regions, are sufficient and required for transposition. The left and right ends were not interchangeable. The Tol2 vector carrying an insert of >11 kb could transpose, but a certain length of spacer, <276 but >18 bp, between the left and right ends was necessary for excision. Furthermore, we found that a 5-bp sequence, 5'-(A/G)AGTA-3', is repeated 33 times in the essential subterminal region. Mutations in the repeat sequence at 13 different sites in the subterminal region, as well as mutations in TIRs, severely reduced the excision activity, indicating that they play important roles in transposition. The identification of the minimal cis-sequence of the Tol2 element and the construction of mini-Tol2 vectors will facilitate development of useful transposon tools in vertebrates. Also, our study established a basis for further biochemical and molecular biological studies for understanding roles of the repetitive sequence in the subterminal region in transposition.  相似文献   

12.
Transposon-mediated gene trapping in zebrafish   总被引:1,自引:0,他引:1  
  相似文献   

13.
Cheng H  Zhou R  Liu L  Du B  Zhuo R 《Genetica》2000,108(1):53-56
Cyclic core dendritic polymer is a new type of synthetic polymers. The ability of generation 4 of the dendrimer with a core of 1,4,7,10-tetraazacyclododecane to function as an effective gene delivery vector was investigated. Results from fluorescence in situhybridization (FISH) show that the pCH 110 plasmid DNA was transferred into human small intestine cancer metastatic ascites (HICMA) cells induced by this kind of dendrimer as a vector. The transferred LacZ, GFP and luciferase genes were highly expressed in the transfected HICMA, COS-7 and 293 cells. These studies demonstrate that the dendrimer can transfect mammalian cells in vitrowhich offers an alternatively efficient method for mammalian gene transfer.  相似文献   

14.
Tol1 is a DNA-based transposable element identified in the medaka fish Oryzias latipes and a member of the hAT (hobo/Activator/Tam3) transposable element family. Its mobility has already been demonstrated in the human and mouse, in addition to its original host species. This element is thus expected to be useful in a wide range of vertebrates as a genomic manipulation tool. Herein, we show that the Tol1 element can undergo excision in the African clawed frog Xenopus laevis, a major model organism for vertebrate genetics and developmental biology. An indicator plasmid carrying a Tol1 element was injected into 2- or 4-cell-stage embryos together with either a helper plasmid coding for the full-length Tol1 transposase or a modified helper plasmid yielding a truncated protein, and recovered from tailbud-stage embryos. Deletion of the Tol1 region of the indicator plasmid was observed in the experiment with the full-length transposase, and not in the other case. The deletion was associated with various footprint sequences at breakpoints, as frequently observed with many DNA-based transposable elements. These results indicate that the Tol1 element was excised from the indicator plasmid by catalysis of the transposase, and suggest that the Tol1 element is mobile in this frog species.  相似文献   

15.
We established a transgenic zebrafish strain expressing chicken lysozyme gene under the control of the Japanese flounder keratin gene promoter, and investigated its resistance to a pathogenic bacterial infection. To generate the lysozyme transgenic construct, Japanese flounder keratin promoter was linked to both the hen egg white (HEW) lyoszyme gene and green fluorescence protein (GFP) gene used as a selection marker for the transgenic strains, in a recombinant plasmid. The recombinant plasmid was microinjected into fertilized zebrafish eggs. In F2 transgenic zebrafish, GFP expression was strong in the epithelial tissues, liver and gill from the embryonic stage to the adult stage. The expressions of HEW lysozyme and GFP mRNA were confirmed in the liver and skin by RT-PCR. Western blot analysis showed that both HEW lysozyme and GFP were present in protein extracts from the liver of transgenic zebrafish, but not in protein extracts from the muscle. The lytic activity of protein extracts from the liver (assessed by a lysoplate assay using Micrococcus lysodeikticus as a substrate) was 1.75 times higher in F2 transgenic zebrafish than in the wild type. In a challenge experiment, 65% of the F2 transgenic fish survived an infection of Flavobacterium columnare and 60% survived an infection of Edwardsiella tarda, whereas 100% of the control fish were killed by both pathogens. However, the survival rates of the transgenic fish were not significantly higher when higher concentrations of bacteria were used.  相似文献   

16.
Sleeping Beauty (SB) is a gene-insertion system reconstructed from transposon sequences found in teleost fish and is capable of mediating the transposition of DNA sequences from transfected plasmids into the chromosomes of vertebrate cell populations. The SB system consists of a transposon, made up of a gene of interest flanked by transposon inverted repeats, and a source of transposase. Here we carried out a series of studies to further characterize SB-mediated transposition as a tool for gene transfer to chromosomes and ultimately for human gene therapy. Transfection of mouse 3T3 cells, HeLa cells, and human A549 lung carcinoma cells with a transposon containing the neomycin phosphotransferase (NEO) gene resulted in a several-fold increase in drug-resistant colony formation when co-transfected with a plasmid expressing the SB transposase. A transposon containing a methotrexate-resistant dihydrofolate reductase gene was also found to confer an increased frequency of methotrexate-resistant colony formation when co-transfected with SB transposase-encoding plasmid. A plasmid containing a herpes simplex virus thymidine kinase gene as well as a transposon containing a NEO gene was used for counterselection against random recombinants (NEO+TK+) in medium containing G418 plus ganciclovir. Effective counterselection required a recovery period of 5 days after transfection before shifting into medium containing ganciclovir to allow time for transiently expressed thymidine kinase activity to subside in cells not stably transfected. Southern analysis of clonal isolates indicated a shift from random recombination events toward transposition events when clones were isolated in medium containing ganciclovir as well as G418. We found that including both transposon and transposase functions on the same plasmid substantially increased the stable gene transfer frequency in Huh7 human hepatoma cells. The results from these experiments contribute technical and conceptual insight into the process of transposition in mammalian cells, and into the optimal provision of transposon and transposase functions that may be applicable to gene therapy studies.  相似文献   

17.
This report describes the delivery of plasmid DNA containing either the β-glucuronidase (GUS) or the green fluorescent protein (GFP) reporter gene into intact plant cells of bamboo callus, lilium scales, and Nicotiana benthamiana suspension culture cells. By first plasmolyzing the tissues or cells with 0.4 m sucrose in the presence of plasmid DNA, electroporation effectively delivers plasmid DNA into the intact plant cells. Transient expression of the GUS gene, as revealed by histochemical assays, showed the presence of blue-staining areas in the electroporated tissues. A short exposure of cells to 2% DMSO (dimethyl sulfoxide) prior to plasmolysis elevated the level of transient GUS activity. When plasmid DNA containing a synthetic GFP gene was used, a strong green fluorescence was observed in N. benthamiana suspension culture cells that were subjected to plasmolysis and electroporation. These results suggest that plasmolysis brings the plasmid DNA into the void space that is in close vicinity to the plasmalemma, allowing electroporation to efficiently deliver the plasmid DNA into intact plant cells. Received: 15 June 1998 / Revision received: 18 August 1998 / Accepted: 28 August 1998  相似文献   

18.
Koga A  Shimada A  Shima A  Sakaizumi M  Tachida H  Hori H 《Genetics》2000,155(1):273-281
Tol2 is a transposable element of the terminal-inverted-repeat class, residing in the genome of the medaka fish Oryzias latipes. The genus Oryzias contains more than 10 species for which phylogenetic relationships have previously been estimated. To infer the history of Tol2 in this genus we performed genomic Southern blots and PCR analyses of 10 of the species. It was revealed that Tol2 occurs in 2 of the 10 species (O. curvinotus and O. latipes) and that the length and the restriction map structure of Tol2 are identical in the two cases. Further, sequencing analysis revealed an extremely low level of divergence compared with that in a nuclear gene. These results suggest recent incorporation of Tol2 into one or both of the two species, implying horizontal transfer of Tol2 from one species to the other or into them both from a common source.  相似文献   

19.
An infectious clone of the Periplaneta fuliginosa densovirus (PfDNV) has been constructed and the PfDNV genome can rescue from the plasmid and replicate as the wild-type virus in nymphs of P. fuliginosa. To investigate the ability of the cloned PfDNV genome to be used as a stable and persistent expression vector, we constructed seven recombinant plasmids in which the GFP reporter gene was inserted into the genome of PfDNV. When these recombinant constructs were transfected into hosts, the GFP was expressed efficiently in every clone. Southern blot analysis revealed that recombinant plasmids had integrated into host genome. Infectious recombinant virions could be produced from plasmids in which the GFP gene was downstream of and in frame with the NS3 and NS1 coding regions. These results indicate that PfDNV genome can be used as an insect vector for the transfer and persistent expression of an exogenous gene.  相似文献   

20.
The tra gene of Streptomyces lividans plasmid plJ101 is required for both plasmid DNA transfer and plJ101-induced mobilization of chromosomal genes during mating. We show that a chromosomally inserted copy of tra mediates transfer of chromosomal DNA at high frequency but promotes efficient transfer of plasmids only when they contain a previously unknown locus, here named clt. Insertional mutation or deletion of clt from plJ101 reduced plasmid transfer mediated by either plasmid-borne or chromosomally located tra by at least three orders of magnitude, abolished the transfer-associated pocking phenomenon, and interfered with the ability of tra+ plasmids to promote transfer of chromosomal DNA. Our results indicate that plasmid transfer in S. lividans involves a cis-acting function dispensable for chromosomal gene transfer and imply that either the S. lividans chromosome encodes its own clt-like function or, alternatively, that transfer of plasmid and chromosomal DNA occurs by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号