首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although fast‐growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUEi), stable carbon isotope composition (δ13C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUEi and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUEi13C, whereas P. × euramericana had a considerable growth increment and the highest WUEi13C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (gs) and lowest WUEi13C. Moreover, significant correlations were observed between WUEi and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUEi and δ13C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUEi. It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water‐limited regions and others, e.g. P. cathayana, may be better for water‐abundant areas.  相似文献   

2.

Background and aim

Significant differences in tree growth were observed in an exotic pine plantation under different harvest residue management regimes at ages 2–10 years. However, the variations in tree growth between residue management treatments could not be explained by soil and foliar nutrient analyses, except by potassium (K) concentration. Therefore, this study determined the carbon isotope composition (δ13C) and oxygen isotope composition (δ18O) of current and archived foliar samples from the exotic pine plantation to establish relationships with foliar K concentration and tree growth indices as a means to determine changes in stomatal conductance (gs) and photosynthetic rate (Amax) or water use efficiency (WUE), and therefore understand the variations in tree growth across treatments.

Methods

The harvest residue treatments were: (1) residue removal, RR0; (2) single level residue retention, RR1; and (3) double level residue retention, RR2. Foliar δ13C and δ18O were determined for samples at ages 2, 4, 6 and 10 years, and the atmospheric 13C discrimination (Δ13C), intercellular CO2 concentration (Ci) and WUE were determined from the δ13C data. Litter needle δ13C and δ18O were also determined over 15 months between ages 9 and 10 years. These parameters or variables where correlated to each other as well as to the periodic mean annual increment of basal area (PAIB) and the periodic mean annual increment of tree diameter at breast height (PAID) across the treatments and over time. Foliar δ13C and δ18O were also related to published data of foliar K concentrations of the same trees.

Results

Significant variations of foliar δ13C, and therefore WUE and Δ13C, across treatments were only observed at ages 4 and 10 years old, and foliar δ18O at age 4 years old only. The results showed increasing foliar δ13C, δ18O and WUE, and decreasing Δ13C and Ci, from RR0 to RR2 treatments. However, while the WUE was positively related to the PAID and PAIB at age 4 years, it was negatively related to PAID and PAIB at age 10 years old. Litter needle δ13C, indicative of WUE, was also negatively related to the PAID at age 10 years old. . At age 4 years, foliar δ13C and δ18O were positively related with a steep slope of 7.70 ‰ across treatments, and that both isotopes were positively related to foliar K concentrations. Similarly, δ18O was negatively related to the Δ13C. No significant relationship can be determined between foliar δ13C, or Δ13C, and δ18O at age 10 years old. In addition, WUE was increasing (p?<?0.001) and Δ13C and Ci decreasing (p?<?0.001) with decreasing PAID over time.

Conclusions

The variations at age 4 years in foliar δ13C or Δ13C and δ18O and increasing WUE with increasing growth rate suggest growth induced water-stress with increasing residue-loading rate as a result of the nutritional effect of the harvest residues on tree growth. At age 10 years, the negative relationships between WUE and PAID indicate nutrient limitation has an over-riding effect on δ13C variations rather than gs. This was due to the lack of a significant relationship between foliar Δ13C and δ18O at this age, as well as over time.  相似文献   

3.
The productivity of short‐rotation coppice (SRC) plantations with poplar (Populus spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single‐stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow‐based canopy transpiration (Ec), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total Ec for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.  相似文献   

4.
Water scarcity and nitrogen shortage are the main constraints on durum wheat productivity. This paper examines the combined effects of a constant water deficit and nitrogen supply (NS) on growth, photosynthesis, stomatal conductance (gs) and transpiration, instantaneous and time‐integrated water use efficiency (WUE) and nitrogen use efficiency (NUE) and carbon isotope discrimination (Δ13C) in durum wheat genotypes grown in pots under greenhouse conditions. Three water levels (40%, 70% and 100% container capacity), two nitrogen doses (high and low N) and four genotypes were assayed in a total of 24 experimental treatments. Water and nitrogen treatments were imposed 2 weeks after plant emergence. The growth, nitrogen content and Δ13C of the shoot and the gas exchange in the flag leaf were determined about 2 weeks after anthesis. As expected, both water and NS had a strong positive effect on growth. However, a reduction in water supply had low effect decreasing photosynthesis and transpiration, Δ13C and NUE and increasing WUE. On the contrary, increasing the level of nitrogen supplied had a significant negative effect on gs, which decreased significantly the ratio of intercellular to ambient CO2 concentrations and Δ13C, and increased both instantaneous and time‐integrated WUE. In addition, a higher N level also negatively affected the instantaneous and time‐integrated NUE. The Δ13C of shoots correlated significantly and negatively with either instantaneous or time‐integrated measurements of WUE. Moreover, within each NS, Δ13C also correlated negatively with the integrated NUE. We concluded that under our experimental conditions, Δ13C gives information about the efficiency with which not just water but also nitrogen are used by the plant. In addition, this study illustrates that a steady water limitation may strongly affect biomass without consistent changes in WUE. The lack of effect of the different water regimes on gas exchange, WUE and Δ13C illustrate the importance of how stress is imposed during growth.  相似文献   

5.
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration‐driven water flow is required for nutrient uptake, climatic stress‐induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an “isohydric trap,” a dryness‐induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13C, δ18O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18O and higher δ13C values than the other species, indicating higher time‐integrated transpiration and water‐use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry‐biomass (up to 63‐fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18O and lower δ13C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.  相似文献   

6.
Spatial variation in mean annual precipitation is the principal driver of plant water and nitrogen status in drylands. The natural abundance of carbon stable isotopes (δ13C) in photosynthetic tissues of C3 plants is an indicator of time‐integrated behaviour of stomatal conductance; while that of nitrogen stable isotopes (δ15N) is an indicator of the main source of plant N (soil N vs. atmospheric N2). Previous studies in drylands have documented that plant δ13C and δ15N values increase with decreasing mean annual precipitation due to reductions in stomatal conductance, and soil enriched in 15N, respectively. However, evidence for this comes from studies focused on stable isotopes measurements integrated at the plant community level or on dominant plants at the site level, but little effort has been made to study C and N isotope variations within a species growing along rainfall gradients. We analysed plant δ13C, δ15N and C/N values of three woody species having different phenological leaf traits (deciduous, perennial and aphyllous) along a regional mean annual precipitation gradient from the central‐western Argentinian drylands. Noticeably, plant δ13C and δ15N values in the three woody species did not increase towards sites with low precipitation or at the start of the growing season (drier period), as we expected. These results suggest that environmental factors other than mean annual precipitation may be affecting plant δ13C and δ15N. The short‐term environmental conditions may interact with species‐specific plant traits related to water and nitrogen use strategies and override the predictive influence of the mean annual precipitation on plant δ13C and δ15N widely reported in drylands.  相似文献   

7.
8.
The relationship among water use efficiency (WUE), productivity and carbon isotopic composition (δ13C) in white spruce (Picea glauca (Moench) Voss) seedlings was investigated. Sixteen hundred seedlings representing 10 controlled crosses were planted in the field in individual buried sand-filled cylinders. The soil water content in the cylinders was measured using time domain reflectometry over two growing seasons and seedling water use determined by water balance. Two watering treatments were imposed: irrigation and dry land. There was significant (1.6–2.0%c) genetic variation in needle δ13C. Ranking of crosses in terms of δ13C was generally maintained over watering treatments and there was not a significant genetic versus environmental interaction. There was a positive correlation between δ13C and both intrinsic and long-term WUE (more positive δ13C with increased WUE) and between δ13C and productivity, suggesting a correlation due to variation in photosynthetic capacity. Root to shoot ratios did not increase in water-stressed plants, indicating that responses to drought were primarily at the level of gas exchange, rather than through morphological changes. Our results indicate that it should be possible to use δ13C as a surrogate for WUE and to select white spruce genotypes for high WUE without compromising yield.  相似文献   

9.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

10.
To gain further insight into comparative ecophysiology of different leaf types, water-use efficiency (WUE) and internal leaf carbon dioxide concentration (Ci) were estimated in the field for juvenile leaves and phyllodes of Acacia koa by carbon dioxide and water vapor exchange using a closed system infrared gas analyzer and humidity sensor, and by δ13C measurements. Both methods indicate that phyllodes possessed higher WUE and lower Ci than juvenile leaves. However, Ci predicted by δ13C for juvenile leaves and phyllodes was lower than the average gas exchange estimated values of Ci and closer to minimal gas exchange estimated values of Ci. It is suggested that δ13C may be influenced more during times of maximal assimilation and leaf expansion than during maintenance.  相似文献   

11.
Stable carbon isotope analyses of vertebrate hard tissues such as bones, teeth, and tusks provide information about animal diets in ecological, archeological, and paleontological contexts. There is debate about how carbon isotope compositions of collagen and apatite carbonate differ in terms of their relationship to diet, and to each other. We evaluated relationships between δ13Ccollagen and δ13Ccarbonate among free‐ranging southern African mammals to test predictions about the influences of dietary and physiological differences between species. Whereas the slopes of δ13Ccollagen–δ13Ccarbonate relationships among carnivores are ≤1, herbivore δ13Ccollagen increases with increasing dietary δ13C at a slower rate than does δ13Ccarbonate, resulting in regression slopes >1. This outcome is consistent with predictions that herbivore δ13Ccollagen is biased against low protein diet components (13C‐enriched C4 grasses in these environments), and δ13Ccarbonate is 13C‐enriched due to release of 13C‐depleted methane as a by‐product of microbial fermentation in the digestive tract. As methane emission is constrained by plant secondary metabolites in browse, the latter effect becomes more pronounced with higher levels of C4 grass in the diet. Increases in δ13Ccarbonate are also larger in ruminants than nonruminants. Accordingly, we show that Δ13Ccollagencarbonate spacing is not constant within herbivores, but increases by up to 5 ‰ across species with different diets and physiologies. Such large variation, often assumed to be negligible within trophic levels, clearly cannot be ignored in carbon isotope‐based diet reconstructions.  相似文献   

12.
13.
A field experiment involving two planting densities (83,333 and 166,666 plants per ha), two cropping systems (monoculture and mixed culture) and five cowpea [Vigna unguiculata L. (Walp.)] genotypes was conducted at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to select cowpea material with superior growth and water-use efficiency (WUE). The results showed significantly higher photosynthetic rates, stomatal conductance and transpiration in leaves of plants at low density and in monoculture due to greater chlorophyll (Chl) levels relative to those at high density and in mixed culture. As a result, C concentration in leaves and the amount of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B accumulated in shoots at low density and under monoculture were also much higher. Even though no marked differences in photosynthetic rates were found between and among the five cowpea genotypes, leaf C concentration and shoot C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents differed considerably, with Sanzie exhibiting the highest C concentration and C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents in shoots, followed by Bensogla and Omondaw, while ITH98-46 and TVu1509 had the lowest shoot concentration and contents of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B. WUE (calculated as photosynthate produced per unit water molecule transpired) was significantly greater in plants at low density and monoculture relative to those at high density and in mixed culture. Isotopic analysis revealed significant differences in δ13C values of sorghum [Sorghum bicolor L. (Moench.)] and cowpea, with higher δ13C values being obtained for plants at low density and in monoculture relative to those at high density or in mixed culture. The five cowpea genotypes also showed significant differences in δ13C values, with Sanzie exhibiting the most negative value (i.e. low WUE) and ITH98-46, the least negative δ13C value (i.e. high WUE). Whether measured isotopically or from gas-exchange studies, sorghum (a C4 species) exhibited much higher WUE relative to cowpea (a C3 species). Both correlation and regression analyses revealed a positive relationship between WUE from gas-exchange studies and δ13C values from isotopic analysis of cowpea and sorghum shoots.  相似文献   

14.
We tested the reliability of herbivore faecal δ13C and δ15N values for reconstructing diet through review of an extensive database derived from a 3-year study of ungulates in South Africa's Kruger National Park. Faeces are a useful material for stable isotope studies of diet because they record dietary turnover at very short time scales, and because sampling is non-invasive. However, the validity of faecal isotope proxies may be questioned because they represent only undigested food remains. Results from Kruger Park confirm that free-ranging browsers have faecal δ13C consistent with C3 feeding, grazer faeces are C4, and mixed-feeder faeces intermediate. Although the respective ranges do not overlap, there is significant variation in faecal δ13C of browsers and grazers (~2.0–4.0‰) across space and through time. We demonstrate that most (~70%) of this variation can be ascribed to corresponding patterns of variation in the δ13C of C3 and C4 plants, respectively, re-enforcing the fidelity of faecal isotope proxies for diet but highlighting a need for mixing models that control for variations in plant δ13C in order to achieve accurate diet reconstructions. Predictions for the effects of climate (rainfall) and ecophysiology on 15N-abundance variations in mammals do not persist in faeces. Rather, faecal δ15N tracks changes in plant δ15N, with further fractionation occurring primarily due to variations in dietary protein (reflected by %N). Controlling for these effects, we show that a dual-isotope multiple source mixing model (Isosource) can extend diet reconstructions for African savanna herbivores beyond simplified C3/C4 distinctions, although further understanding of variations in mammal δ15N are needed for greater confidence in this approach.  相似文献   

15.
Breeding economically important C4 crops for enhanced whole‐plant water‐use efficiency (WUEplant) is needed for sustainable agriculture. WUEplant is a complex trait and an efficient phenotyping method that reports on components of WUEplant, such as intrinsic water‐use efficiency (WUEi, the rate of leaf CO2 assimilation relative to water loss via stomatal conductance), is needed. In C4 plants, theoretical models suggest that leaf carbon isotope composition (δ13C), when the efficiency of the CO2‐concentrating mechanism (leakiness, ?) remains constant, can be used to screen for WUEi. The limited information about how ? responds to water limitations confines the application of δ13C for WUEi screening of C4 crops. The current research aimed to test the response of ? to short‐ or long‐term moderate water limitations, and the relationship of δ13C with WUEi and WUEplant, by addressing potential mesophyll CO2 conductance (gm) and biochemical limitations in the C4 plant Sorghum bicolor. We demonstrate that gm and ? are not responsive to short‐ or long‐term water limitations. Additionally, δ13C was not correlated with gas‐exchange estimates of WUEi under short‐ and long‐term water limitations, but showed a significant negative relationship with WUEplant. The observed association between the δ13C and WUEplant suggests an intrinsic link of δ13C with WUEi in this C4 plant, and can potentially be used as a screening tool for WUEplant in sorghum.  相似文献   

16.
Using both oxygen isotope ratios of leaf water (δ18OL) and cellulose (δ18OC) of Tillandsia usneoides in situ, this paper examined how short‐ and long‐term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ18Oa). During sample‐intensive field campaigns, predictions of δ18OL matched observations well using a non‐steady‐state model, but the model required data‐rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ18OL–M) matched observed δ18OL and observed δ18Oa when leaf water turnover was less than 3.5 d. Using the δ18OL–M model and weekly samples of δ18OL across two growing seasons in Florida, USA, reconstructed δ18Oa was ?12.6 ± 0.3‰. This is compared with δ18Oa of ?12.4 ± 0.2‰ resolved from the growing‐season‐weighted δ18OC. Both of these values were similar to δ18Oa in equilibrium with precipitation, ?12.9‰. δ18Oa was also reconstructed through a large‐scale transect with δ18OL and the growing‐season‐integrated δ18OC across the southeastern United States. There was considerable large‐scale variation, but there was regional, weather‐induced coherence in δ18Oa when using δ18OL. The reconstruction of δ18Oa with δ18OC generally supported the assumption of δ18Oa being in equilibrium with precipitation δ18O (δ18Oppt), but the pool of δ18Oppt with which δ18Oa was in equilibrium – growing season versus annual δ18Oppt – changed with latitude.  相似文献   

17.
Leaf respiration in the dark and its C isotopic composition (δ13CR) contain information about internal metabolic processes and respiratory substrates. δ13CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated 13C‐enriched organic acids, however, studies simultaneously measuring δ13CR during LEDR and potential respiratory substrates are rare. We determined δ13CR and respiration rates (R) during LEDR, as well as δ13C and concentrations of potential respiratory substrates using compound‐specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ13CR and R patterns during LEDR were strongly species‐specific and showed an initial peak, which was followed by a progressive decrease in both values. The species‐specific differences in δ13CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were 13C‐enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ13C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong 13C enrichment in leaf dark‐respired CO2.  相似文献   

18.
Southern African forests are naturally fragmented yet hold a disproportionately high number of bird species. Carbon and nitrogen stable isotopes were measured in feathers from birds captured at Woodbush (n = 27 species), a large afromontane forest in the eastern escarpment of Limpopo province, South Africa. The δ13C signatures of a range of forest plants were measured to categorise the food base. Most plants sampled, including two of five grass species, had δ13C signatures typical of a C3 photosynthetic pathway (?29.5 ± 1.9‰). Three grass species had a C4 signature (?12.0 ± 0.6‰). Most bird species had δ13C values representing a predominantly C3‐based diet (?24.8‰ to ?20.7‰). δ15N values were as expected, with higher levels of enrichment associated with a greater proportion of dietary animal matter. The cohesive isotopic niche defining most species (n = 22), where the ranges for δ13C and δ15N were 2.4‰ and 3.4‰, respectively, highlight the difficulties in understanding diets of birds in a predominantly C3‐based ecosystem using carbon and nitrogen stable isotopes. However, variation in isotopic values between and within species provides insight into possible niche width and the use of resources by different birds within a forest environment.  相似文献   

19.
The use of efficient selection traits for screening under contrasting irrigation water salinity is a challenge for breeders. To identify patterns, grain yield (GY) and yield components (kernels m?2, thousand kernels weight), growth traits (plant height, biomass), flag leaf ion accumulation (Na+ and K+), carbon isotope composition (δ13Cgrain) and nitrogen concentration (Ngrain) of grains were assessed on 25 durum wheat genotypes (G) in two consecutive growing seasons (2010 and 2011), in three semi‐arid locations in Tunisia. Each location differed in their irrigation water salinity as measured by electrical conductivity: Echbika (S1, 6 dS m?1), Barrouta (S2, 12 dS m?1) and Sidi Bouzid (S3, 18 dS m?1). GY was shown to be negatively correlated to Ngrain as well as to δ13Cgrain. This is confirmed by a multiple linear regression analysis that showed that both δ13Cgrain and Ngrain were the major determinant components for GY variability under S3. A high genotypic variability was observed and the improved genotype Maali exhibited the most stable GY under the three irrigation water salinities and the two cropping seasons. Maali showed the lowest δ13Cgrain. This indicates that tolerance in durum wheat is likely to be correlated to the ability of maintaining a high stomatal conductance. According to our data suggests δ13Cgrain can be used for an efficient screening of salt tolerant durum wheat. Under our experimental conditions, Ngrain was shown to be highly correlated to δ13Cgrain and can therefore be easier‐to‐use trait to assess the tolerance to salinity.  相似文献   

20.
1. Despite the ubiquity and abundance of water striders (Hemiptera: Gerridae) in temperate streams and rivers and their potential usefulness as sentinels in contaminant studies, little is known about their feeding ecology and lipid dynamics. 2. In this study we used stable isotopes of carbon (δ13C) and nitrogen (δ15N) and elemental carbon to nitrogen ratios (C/N) to assess dietary habits and lipid content, respectively, for water striders. 3. To determine diet‐tissue fractionation factors, nymphs of the most common species in New Brunswick, Canada, Aquarius remigis were reared in the laboratory for 73 days and exhibited rapid isotopic turnover in response to a switch in diet (C half‐life = 1.5 days, N half‐life = 7.8 days). Their lipid content increased towards the end of the growing season and resulted in lower δ13C values. Diet‐tissue fractionation factors were established after correction of δ13C data for the confounding effect of de novo lipid synthesis (strider δ13Cadj– diet δ13Cadj = 0.1‰, strider δ15N – diet δ15N = 2.7‰). 4. Water striders from the majority of 45 stream sites (83%) in New Brunswick had less than 50% contribution of aquatic carbon to their diets but showed a gradual increase in the contribution of this carbon source to their diet with increasing stream size. 5. These data indicate that striders exhibit a strong connection to terrestrial carbon sources, making them important users of energy subsidies to streams from the surrounding catchment. However, this dependence on terrestrial organic matter may limit their utility as indicators of contamination of aquatic systems by heavy metals and other pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号