首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentration of seagulls in the Chafarinas Islands (three semi‐arid North African islets) induces profound changes in soil properties including eutrophication, salinization, acidification and nutrient imbalances. Soils of heavily seabird‐affected sites have significantly higher soluble K and NO3 levels (>20‐fold), Zn and Fe availability (>5‐fold), water‐retention capacity (>40% increase) and 15N enrichment, compared with control sites. These seabird‐induced soil changes are paralleled by (i) different patterns of abundance of the two main chenopod shrubs: Suaeda vera abundance is higher (>30‐fold) in seabird‐affected sites while Salsola oppositifolia largely dominates in low‐affected areas. No differences were found for Atriplex halimus. The abundance of the first two species may be largely explained by changes in soil soluble K‐to‐available Ca ratio whose value depends of the interaction between seabird products and soil constituents; (ii) significant increases in leaf N, P and Zn levels, and in all K ratios, paralelled by a decrease in Ca, in Salsola; but only by increased K/Na and P/Ca ratios in Suaeda leaves. These changes were significantly correlated to changes in species abundances; (iii) an increase of δ15N, paralleled by a decrease in δ13C values, in Salsola leaves but not in Suaeda.
Conjoint analysis of the seabird‐related changes in soil properties, species abundance, leaf composition and differential response to the seabird‐induced fertilization/severity gradient of the two main chenopod shrub species, has led us to propose an explanatory hypothesis of seagull‐soil‐shrub relationships. According to this, the seagull‐induced soil changes, mediated by processes of (in)tolerance‐facilitation, play a main role in determining the abundance and the leaf nutrient status of the studied chenopod shrubs, which have contrasting physiological adaptations.  相似文献   

2.
Water stress is regarded as a global challenge to forests. Unlike other water‐limited areas, the water use strategies of rocky mountainous forests, which play an important ecohydrological role, have not received sufficient attention. To prove our hypothesis that species adopt different water use strategies to avoid competition of limited water resources, we used site abiotic monitoring, sap flow and stable isotope method to study the biophysiological responses and water use preferences of two commonly distributed forest species, Pinus tabuliformis (Pt) and Quercus variabilis (Qv). The results showed that Pt transpired higher than Qv. Pt was also prone to adopt isohydric water use strategy as it demonstrated sensitive stomatal control over water loss through transpiration. Qv developed cavitation which was reflected by the dropping Ec in response to high vapor pressure deficit, concentrated peak sap flux density (Js), and enlarged hysteresis loop. Considering the average soil depth of 52.8 cm on the site, a common strategy shared by both species was the ability to tap water from deep soil layers (below 40 cm) when soil water was limited, and this contributed to the whole growing season transpiration. The contribution of surface layer water to plant water use increased and became the main water source for transpiration after rainfall. Qv was more efficient at using water from surface layer than Pt due to the developed surface root system when soil water content was not stressed. Our study proves that different water‐using strategies of co‐occurring species may be conducive to avoid competition of limited water resources to guarantee their survival. Knowledge of water stress‐coping strategies of trees has implications for the understanding and prediction of vegetation composition in similar areas and can facilitate forest management criteria for plantations.  相似文献   

3.
Short-chained oxygenated VOC (oxVOCs) emissions from Pinus halepensis saplings were monitored in response to changes in water availability. Online measurements were made with a proton transfer reaction—mass spectrometer under controlled conditions, together with CO2 and H2O exchange measurements. Masses corresponding to methanol and acetone were the most emitted oxVOCs. All the oxVOC exchanges, except that of acetone (M59), were significantly related to stomatal conductance and transpiration. Acetaldehyde (M45) emission showed, moreover, a strong dependence on the concentration of acetaldehyde in the ambient: stomatal opening (stomatal conductance above 75 mmol m−2 s−1) only allowed increased emissions when external concentration were below 6 ppb. Acetone (M59) presented an important peak of emission following light and stomatal opening in the morning when plants were water stressed. Thus, the alterations in oxVOC emissions in P. halepensis caused by the water deficit seem to be mainly driven by water stress effect on stomatal closure and oxVOC air concentrations.  相似文献   

4.
Ecophysiological and structural traits of seedlings of the water-saver Pinus halepensis and the water-spenders Quercus coccifera and Q. ilex were studied in response to water stress under greenhouse conditions. Water deficit reduced stomatal conductance (g s) and, as a consequence, both net CO2 assimilation (A) and transpiration rate (E) were also reduced. Water stress also emphasized midday down-regulation of the photochemical efficiency (dynamic photoinhibition) reducing quantum yield of noncyclic electron transport (ΦPSII), photochemical quenching (qP) and photochemical efficiency of the open reaction centres of PSII () and involved an increase of thermal dissipation of excess energy. However, water stress not only induced dynamic photoinhibition but also brought a reduction in F v/F m (chronic photoinhibition). Despite the water-saving strategy of P. halepensis that limited net CO2 assimilation, this species showed a higher photochemical efficiency and lower photoinhibition than Quercus species. This was not the result of a different photochemical quenching but was linked to a higher value of , indicating a less severe photo-inactivation of PSII. Water stress resulted in a loss of pigment content and in an increase of the carotenoids/chlorophyll ratio, antioxidant capacity and the biomass rate allocated to roots as opposed to that assigned to leaves. P. halepensis showed a lower photoinhibition and antioxidant activity than Quercus species due to its lower pigment content and higher proportion of carotenoids allowing P. halepensis to use, in a more effective way, the lesser excess energy absorbed.  相似文献   

5.
Question: Do soil water content and/or soil nitrogen (N) content and/or soil phosphorus (P) content affect the biomass of Vaccinium myrtillus and V. vitis‐idaea in a sub‐alpine heath? Location: Dolomites, northern Italy, 1800 m a.s.l. Methods: We determined above‐ground and below‐ground biomass of the shrubs at three sites, each on a different substrate type. At each site, we determined soil N‐ and P‐contents. We also determined leaf water potential (Psi;1), N‐ and P‐concentrations in plant tissues and litter, as well as δ13C and δ15N in mature leaves. Results: V. myrtillus biomass was highest at the silicate site, V. vitis‐idaea biomass was highest at the carbonate site. Both shrubs had low biomass at the peat site, possibly due to a toxic effect of waterlogging in wet soils. For both species, pre‐dawn Psi;1 indicated optimal hydration and midday Psi;1 did not show any sign of water stress. Water use efficiency (WUE) did not differ among sites for any species. Whole‐plant nutrient concentrations showed that, with increasing biomass, N was diluted in V. myrtillus tissues while P was diluted in V. vitis‐idaea tissues. Foliar N‐concentration was higher overall for V. myrtillus. Foliar P‐concentration in V. myrtillus peaked at the silicate site. Foliar N : P ratios suggested that V. myrtillus was primarily P‐limited and V. vitis‐idaea primarily N‐limited. Conclusions: Water content affected the distribution of the two shrubs in a similar way, higher P‐availability in the soil enhanced V. myrtillus rather than V. vitis‐idaea.  相似文献   

6.
Abstract Trees growing along windy coasts often have canopies that are greatly reduced in size by the sculpting effects of wind and salt spray. Trees with environmentally reduced stature are called elfinwood (windswept shrub‐form or krummholz) and are ecologically important because they represent outposts growing at the limit of tree success. The purpose of this study was to assess if Banksia grandis elfinwood growing at Cape Leeuwin had a different nutrient status than normal low‐form (LF) trees growing nearby, and if nutrient deficiencies, toxicities and/or imbalances were among the limiting factors imposed on elfinwood. The concentrations of N, P, K, Ca, Mg, Na, Cl, Fe, Mn, Zn, Cu, Mo and B were analysed for mature green foliage, immature foliage, foliage litter, flowers and soil. When the elfinwood and LF trees were compared, the foliar nutrient status was generally similar, except that elfinwood foliage had significantly higher mean concentrations of N, Zn and Cu, while LF trees had higher Fe and Mn contents. Many nutrients were conserved before leaves were shed in both elfinwood and LF trees, including N, P, K, Na, Cl, Mn and Cu (LF trees also conserved Ca and Mg). However, elfinwood and LF tree‐litter contained significantly higher Fe concentrations than green foliage (elfinwood litter also had higher levels of Mg and B). It is tempting to suggest that the translocation of Fe into leaves before they were shed is a regulation mechanism to prevent Fe toxicity, or imbalance in the Fe : Mn ratio. Proteoid roots strongly acidify the soil to mobilize P, which also chemically reduces Fe+3 to plant‐available Fe+2. The increased supply of Fe+2 in the rhizosphere, caused by the action of proteoid roots, might tend to defeat self‐regulation of Fe uptake. It is possible that excess Fe accumulation in the plant might be regulated, in part, by exporting Fe into the leaves before they are shed. The nutrient status of B. grandis elfinwood is compared with mountain elfinwood of North America. The extreme habitat of coastal elfinwood provides many theoretical pathways for nutrient limitation, but B. grandis elfinwood at Cape Leeuwin does not appear to be nutrient deficient.  相似文献   

7.
Increasing biodiversity has been linked to higher primary productivity in terrestrial ecosystems. However, the underlying ecophysiological mechanisms remain poorly understood. We investigated the effects of surrounding species richness (monoculture, two‐ and four‐species mixtures) on the ecophysiology of Lithocarpus glaber seedlings in experimental plots in subtropical China. A natural rain event isotopically labelled both the water uptaken by the L. glaber seedlings and the carbon in new photoassimilates through changes of photosynthetic discrimination. We followed the labelled carbon (C) and oxygen (O) in the plant–soil–atmosphere continuum. We measured gas‐exchange variables (C assimilation, transpiration and above‐ and belowground respiration) and δ13C in leaf biomass, phloem, soil microbial biomass, leaf‐ and soil‐respired CO2 as well as δ18O in leaf and xylem water. The 13C signal in phloem and respired CO2 in L. glaber in monoculture lagged behind those in species mixture, showing a slower transport of new photoassimilates to and through the phloem in monoculture. Furthermore, leaf‐water 18O enrichment above the xylem water in L. glaber increased after the rain in lower diversity plots suggesting a lower ability to compensate for increased transpiration. Lithocarpus glaber in monoculture showed higher C assimilation rate and water‐use efficiency. However, these increased C resources did not translate in higher growth of L. glaber in monoculture suggesting the existence of larger nongrowth‐related C sinks in monoculture. These ecophysiological responses of L. glaber, in agreement with current understanding of phloem transport are consistent with a stronger competition for water resources in monoculture than in species mixtures. Therefore, increasing species diversity in the close vicinity of the studied plants appears to alleviate physiological stress induced by water competition and to counterbalance the negative effects of interspecific competition on assimilation rates for L. glaber by allowing a higher fraction of the C assimilated to be allocated to growth in species mixture than in monoculture.  相似文献   

8.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

9.
Spatially separated ecosystems are often linked by nutrient fluxes. Nutrient inputs may be transferred by physical vectors (i.e., wind and water) or by biotic vectors. In this study, we examine the role of green turtles (Chelonia mydas) as biotic transporters of nutrients from marine to terrestrial ecosystems, where they deposit eggs. We compare low and high nest density sites at Tortuguero, Costa Rica, the largest green turtle rookery in the western hemisphere. Four plant species (Costus woodsonii, Hibiscus pernanbucensis, Hymenocallis littoralis, Ipomoea pes‐caprae) were analyzed at both nest density sites for 15N, total carbon, nitrogen, and phosphorus, and vegetation cover. Sand was analyzed for 15N and total nitrogen. Vegetation at high nest density sites had higher total nitrogen, which was correlated with higher δ15N values, suggesting nutrient input from a marine source. The dominant plant species changed between low and high nest density sites, indicating that turtle‐derived nutrients may alter the plant community composition. The trend in δ15N values of sand was similar, although less pronounced than that of the vegetation. Sand may be a poor integrator of nutrient input due to low nutrient adsorption and high rate of leaching. Sea turtles have previously been shown to deposit considerable amounts of nutrients and energy on nesting beaches. In this study, we estimate annual nitrogen and phosphorus contributions at Tortuguero are 507 and 45 kg/km, respectively, and we demonstrate that beach vegetation likely assimilates a portion of these marine‐derived nutrients.  相似文献   

10.
Nutrient availability is a key factor in Mediterranean ecosystems that affects the primary productivity and the community structure. The great variability of its natural availability is now increasing due to frequent fires, pollution events and changes in rainfall regime associated to climate change. Quercus ilex ssp. ballota and Pinus halepensis are the most abundant tree species in the NW Mediterranean basin. They frequently compete in the early and middle successional stages. We investigated the effects of N and P pulse supplies on nutrient uptake capacity in these two species in an after-fire field area and in nursery conditions on different soil types and competing conditions. In the field, N fertilisation had weak effects on nutrient concentration and mineralomass likely as a consequence of this nutrient not being limiting in this field site whereas P fertilisation increased the P mineralomass and the Mg, S, Fe, K and Ca concentrations and mineralomass in the different biomass fractions of both species 1 and 3 years after fertilisation application. In the nursery experiments, P fertilisation increased the mineralomass and concentrations of P, Mg, S, Fe, K and Ca in all biomass fractions including the roots in both species and in different soils and competition conditions. The increment of nutrient mineralomass was due to both the increase of growth and of nutrient concentrations. Both species were able to absorb significant amounts of the P applied by fertilisation (between 5 and 20%) in short time (18 months). Competing vegetation decreased the positive effects of P fertilisation, and in many cases the negative effect of competing vegetation on nutrient mineralomass was stronger when P availability was increased by fertilisation. Q. ilex subsp ballota showed a greater competitive ability for P than the more pioneer species Pinus halepensis in the field but not in the nursery conditions. Pinus halepensis had greater nutrient mineralomass in calcareous than in siliceous soils. Q. ilex subsp. ballota had a higher root biomass allocation and root nutrient allocation than P. halepensis, but both species showed a high capacity to increase their nutrient uptake when its availability increased by fertilisation, thus assuring a great nutrient reserve for future growth periods and contributing to retain nutrients in the ecosystem.  相似文献   

11.
The carbon isotope discrimination (δ^13C) of leaves has been shown to be correlated with the transpiration efficiency of leaves in a wide range of species. This has led to δ^13C being used in breeding programs to select for improved transpiration efficiency. The correlation between δ^13C and transpiration efficiency was determined under well-watered conditions during the vegetative phase in six genotypes of lentil (Lens culinaris Medikus), six genotypes of chickpea (Cicerarietinum L.) and 10 cultivars of narrow-leafed lupin (Lupinus angustifolius L.). Biomass (dry matter) accumulation and water use (transpiration) varied among the genotypes in all three species and transpiration efficiency was 40% to 75% higher in the most efficient compared with the least efficient genotypes. However, δ^13C and transpiration efficiency were not significantly correlated in any of the species. This suggests that the δ^13C technique cannot be used in selection for transpiration efficiency in the three grain legumes (pulses) studied.  相似文献   

12.
Tree invasions of Mediterranean‐climate ecosystems pose a significant threat to both biodiversity and functioning, by excluding native species, altering soil nutrient status and depleting water resources. In order to attain greater relative biomass associated with successful invasion in these characteristically resource‐poor environments, invasive species must have novel traits that enable better acquisition (e.g. deep roots) or exploitation of different resources (e.g. N2 fixation) and/or more efficient use of available resources than native species. We compared the ecophysiological and morphological traits of three abundant native species to those of the invasive Australian tree species, Acacia cyclops. This species is widely invasive in the Mediterranean‐climate coastal vegetation of South Africa that includes the Strandveld vegetation type. A. cyclops had 30–50% greater foliar N concentrations (< 0.001) in comparison with the native species and lower foliar δ15N values that may indicate N2 fixation. Additionally, A. cyclops maintained higher photosynthetic rates over the dry summer season (ca. 15 μmol m?2 s?1) than the native species. These higher photosynthetic rates may result from sustained access to water due to deeper rooting abilities as indicated by the more negative δD values (< 0.001) of A. cyclops (?43‰) in comparison with the some native species (?29 to ?37‰). Acacia cyclops did not, however, exhibit greater water use efficiencies or photosynthetic nitrogen use efficiencies (> 0.05) compared to native species. Invasiveness of A. cyclops into this resource‐limited Mediterranean‐climate ecosystem appears to be supported by greater resource acquisition, possibly partially through N2 fixation and greater rooting depth, rather than greater resource use efficiency or conservation.  相似文献   

13.
Ferriferous savannas, also known as cangas in Brazil, are nutrient-impoverished ecosystems adapted to seasonal droughts. These ecosystems support distinctive vegetation physiognomies and high plant diversity, although little is known about how nutrient and water availability shape these ecosystems. Our study was carried out in the cangas from Carajás, eastern Amazonia, Brazil. To investigate the N cycling and drought adaptations of different canga physiognomies and compare the findings with those from other ecosystems, we analyzed nutrient concentrations and isotope ratios (δ13C and δ15N) of plants, litter, and soils from 36 plots distributed in three physiognomies: typical scrubland (SB), Vellozia scrubland (VL), and woodland (WD). Foliar δ15N values in cangas were higher than those in savannas but lower than those in tropical forests, indicating more conservative N cycles in Amazonian cangas than in forests. The lower δ15N in savanna formations may be due to a higher importance of mycorrhizal species in savanna vegetation than in canga vegetation. Elevated δ13C values indicate higher water shortage in canga ecosystems than in forests. Foliar and litter nutrient concentrations vary among canga physiognomies, indicating differences in nutrient dynamics. Lower nutrient availability, higher C:N ratios, and lower δ15N values characterize VL, whereas WD is delineated by lower δ13C values and higher soil P. These results suggest lower water restriction and lower P limitation in WD, whereas VL shows more conserved N cycles due to lower nutrient availability. Differences in nutrient and water dynamics among physiognomies indicate different ecological processes; thus, the conservation of all physiognomies is required to ensure the maintenance of functional diversity in this unique ecosystem.  相似文献   

14.
Periodic measurements of gas‐exchange rates and determinations of foliar N and P concentrations were used for evaluating instantaneous water‐use efficiency and photosynthetic nutrient‐use efficiency in two co‐existing dwarf shrubs of different growth form (V. myrtillus, deciduous, and V. vitis‐idaea, evergreen) in a subalpine heath in the southern Alps of Italy. Those data were compared with cumulative assessments of water‐use efficiency and photosynthetic nutrient‐use efficiency obtained by measuring leaf carbon isotope discrimination in leaf tissues and by estimating nutrient resorption from senescing leaves. V. myrtillus presented higher dry‐weight based rates of net photosynthesis (Aweight) compared to V. vitis‐idaea. Aweight was positively correlated with foliar‐nutrient status and intercellular‐to‐ambient gradient in CO2 concentrations. Aweight was, furthermore, negatively correlated with leaf specific mass. Instantaneous photosynthetic nutrient‐use efficiency did not differ between the two species but the percentages of N and P pools resorbed from senescing leaves were somewhat higher in the deciduous species. The evergreen species showed lower P concentrations in senescing leaves which indicated a higher proficiency in resorbing phosphorus compared to the deciduous species. In addition, the evergreen species achieved a higher carbon gain per unit foliar N and P, due to a longer mean residence time of both nutrients. The two species did not differ from each other with respect to both instantaneous and long‐term water‐use efficiency. This was consistent with the climatic pattern, showing no sign of water deficiency through the growing season. Current‐year V. vitis‐idaea leaves had a significantly higher Δ13C compared to previous‐year leaves, possibly mirroring a long term acclimation of evergreen leaves, as far as they age, to the habitat conditions in the understory where evergreen species are usually confined within mixed dwarf‐shrub communities.  相似文献   

15.

Key message

Our study aims to define isotopic and anatomical responses to fires of P. halepensis . Main results: decrease in tree growth and relative conductivity and increase in water use efficiency.

Abstract

We investigated the ecophysiological responses of a Pinus halepensis Mill. stand surviving two wildfires in southern France. Basal area, isotope composition and anatomical traits were analysed before and after fires, using tree rings to assess the ecological responses of trees to heat-related damage. The years were determined based on the presence of fire scars. Stable isotopes (δ13C and δ18O) were measured in tree rings before and after the “fire years”. Anatomical observations allowed qualitative analysis of the scar region and quantification of tracheid size in tree rings before and after the fire years. Relative and percentage conductivity of earlywood and latewood far from the woundwood were estimated. Results showed a decrease in tree growth after the fire events accompanied by an increase in 13C-derived water use efficiency (WUEi) and a decrease in relative conductivity. The positive relationship between δ13C and δ18O suggested that both isotopic variations are mostly driven by changes in stomatal conductance following fire events. P. halepensis proved to be a strong isohydric species, able to survive frequent fires with temporary ecophysiological modifications and anatomical adaptations. Our findings afford new insights into post-fire survival strategies of this species in an environment where fires are predicted to increase in frequency during the twenty-first century.  相似文献   

16.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

17.
The capacity of Mediterranean species to adapt to variable nutrient supply levels in a global change context can be a key factor to predict their future capacity to compete and survive in this new scenario. We aimed to investigate the capacity of a typical Mediterranean tree species, Pinus halepensis, to respond to sudden changes in N and P supply in different environmental conditions. We conducted a fertilisation, irrigation and removal of competing vegetation experiment in a calcareous post-fire shrubland with an homogeneous young (5 years old) population of P. halepensis in order to investigate the retranslocation and nutrient status for the principal nutrients (N, P, Mg, K, S, Ca and Fe), and the nutrient use efficiency (NUE) of the most important nutrients linked to photosynthetic capacity (N, P, Mg and K). P fertilisation increased P concentration in needles, P, N, Mg and K retranslocations, and NUE calculated as biomass production per unit of nutrient lost in the litterfall. The P fertilisation was able to increase the aboveground biomasses and P concentration 3 years after P fertiliser application. Those responses to P fertilisation were enhanced by the removal of competing vegetation. The N needle and litterfall concentration decreased after P fertilisation and this effect was greater when the P fertilisation was accompanied by removal of competing vegetation. The increase of P availability decreased the P-NUE and increased the N-NUE when these variables were calculated as aboveground biomass production per unit of P present in the biomass. Both P-NUE and N-NUE increased when calculated as total aboveground production per unit of nutrient loss. The results show that it is necessary to calculate NUE on a different basis to have a wider understanding of nutrient use. The irrigation did not change the needle nutrient concentrations and the litterfall production, but it significantly changed the nutrient litterfall concentrations and total aboveground contents (especially P and K). These results show a high capacity of P. halepensis to quickly respond to a limiting nutrient such as P in the critical phases of post-fire regeneration. The increase in P availability had a positive effect on growth and P concentrations and contents in aboveground biomass, thus increasing the capacity of growth in future periods and avoiding immediate runoff losses and leachate. This capacity also strongly depends on neighbour competition.  相似文献   

18.
Three species of creekside trees were monitored weekly during the 2007 and 2008 growing seasons. The 2007 growing season was wet early, but became drier as the season progressed. In contrast, the 2008 growing season was dry early, but became wetter as the season progressed. Creekside trees were measured to determine effects of changing water regimes on leaf-level processes. Lonicera tatarica plants were compared to Morus alba and Celtis occidentalis trees. Leaves were monitored for changes in stomatal conductance, transpiration, δ13C, δ15N, δD, leaf temperature, and heat losses via latent, sensible, and radiative pathways. δD of creek water was more similar to ground water than to rain water, but the creek was partially influenced by summer rains. δD of bulk leaf material was significantly higher in individuals of C. occidentalis compared to the other species, consistent with source water coming from shallower soil layers. Despite decreasing water levels, none of these tree species showed signs of water stress. There were no significant differences between species in stomatal conductance or transpiration. Leaf δ13C was significantly lower in individuals of L. tatarica compared to the other species. Differences in δ13C were attributed to a lower carboxylation capacity, consistent with lower leaf nitrogen content in L. tatarica plants. Leaf δ15N was significantly lower in individuals of L. tatarica compared to the other species, consistent with uptake of a different N source. Two of the three sites appeared to be affected by inorganic N from fertilizer run-off. Evidence is presented that these species acquired water and nitrogen from different sources, resulting from differences in root uptake patterns.  相似文献   

19.
The present study explores the xylem‐tapping parasitism by mistletoe (Tapinanthus oleifolius) on native tree species along the Kalahari Transect (KT) using the stable isotopes of carbon and nitrogen. Mistletoe‐host pairs were collected at three geographical locations along the KT rainfall gradient in the 2005 and 2006 wet seasons. Foliar total carbon, total nitrogen and their stable isotope compositions (δ13C and δ15N) were measured. Heterotrophy (H) was calculated using foliar δ13C values of mistletoes and their hosts as an indicator of proportion of carbon in the mistletoes derived from host photosynthate. Based on the mistletoe H‐value and relationship between the mistletoe foliar δ15N and their host foliar δ15N, the results showed that mistletoes along the KT derived both nitrogen and carbon from their hosts. Mistletoes may regulate water use in relation to nitrogen supply. The proportion of carbon in the mistletoes derived from host photosynthate was between 35% and 78%, and the degree of heterotrophy was species‐specific with only limited annual variation. The study emphasizes the importance of incorporating parasitic associations in future studies on studying carbon, water and nutrient cycling along the Kalahari.  相似文献   

20.
Summary Ten seedlings each of Eucalyptus kitsoniana Maiden and Eucalyptus globulus Labill. were subjected to two levels of water stress and two levels of nutrient stress (macro and micro-nutrients) in a greenhouse for 3 weeks. The objectives were to determine the degree to which seedlings show differences in sap chemistry, photosynthesis and transpiration that relate to the environments in which these two species live. Whole plants were then extracted for xylem sap using a pressure chamber and the sap was analyzed for 14 elements using an inductively coupled plasma spectrometer and a nitrometer. For E. kitsoniana water and nutrient stress, applied separately or in combination, significantly reduced leaf conductance, transpiration, photosynthesis and midday water potential. Nutrient stress alone had less effect than water stress on most functions measured. Water stress alone reduced the root/shoot ratio; the combination of water and nutrient stress increased the root/shoot ratio, primarily because of reduced shoot weight. In E. kitsoniana, water stress alone or in combination with nutrient stress increased the xylem sap concentrations of B and Si. Multi-nutrient stress alone, or in combination with water stress, significantly decreased sap Zn and K. For this species, sap N was decreased by nutrient stress, but increased by water stress. E. globulus had significantly lower transpiration rates and less root mass than E. kitsoniana. Slightly lower leaf conductance and photosynthesis were not significant in E. globulus compared to E. kitsoniana. Water and nutrient stress reduced conductance, transpiration (except for nutrient stress) and photosynthesis, and the effects of water stress on E. globulus were greater than the effects of nutrient stress. Midday water potential was reduced by water stress. Water or nutrient stress alone did not alter seedling root/shoot ratio, but the combination of water and nutrient stress significantly increased the root/shoot ratio for both species. For E. globulus, sap concentrations of Mn, Na, Si and K were increased by water stress (alone or in combination with nutrient stress). Sap N increased with water stress or combined stresses, but decreased under nutrient stress alone. When the two species were compared, E. globulus generally had lower or similar nutrient concentrations in the sap, with Ca, Mg, Mn and P significantly lower than in E. kitsoniana. Seedlings of these two species show strong site adaptations to water and nutrient availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号