首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Association mapping of salt tolerance in barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2–8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na+, shoot Cl? and shoot, root Na+/K+ contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.  相似文献   

2.
Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+‐PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high‐throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse‐grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild‐type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse‐ or field‐grown plants. This study validates our greenhouse‐based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.  相似文献   

3.
Abstract

To initiate the creation of phytoextraction cultivars, plants were selected from 60 populations of N. caerulescens for their high shoot biomass or Cd, Ni, and Zn concentrations. They were self-pollinated, and the selection and fixation were continued for three generations in greenhouse conditions. Selected plants showed a potential to produce 5–10 t dry matter ha?1, which is required to decontaminate soils which have been moderately contaminated with Cd. However, the high biomass genotypes could not be fixed, probably both because of their complexity and to the sensitivity of this trait to environmental conditions, and plant density in particular. The selection led to an improvement to the Cd and Zn accumulation capacities of the plants, yet caused a decrease in their Ni accumulation. This is most likely due to a decline in Ni availability in soil, rather than to a deleterious effect of inbreeding. Metal accumulation appeared to be more heritable than biomass production and fixation for the former trait should be quicker than for the latter. The accumulation capacities of the selected plants permitted offtakes representing around 25% of the soil Cd in a single cropping. This potential has to be confirmed in field conditions.  相似文献   

4.
Abstract We tested the hypothesis that contrasting elevations select distinct growth patterns and vegetative phenology in Nothofagus pumilio, a winter deciduous tree that dominates mountain forests of Patagonia. Analysis of saplings maintained under common‐garden conditions for 4 years showed a significant decrease in shoot annual growth, leaf size, and a delay in bud‐break, and leaf expansion with increased elevation of their site of origin. Rapid gain in height seems to be advantageous at low elevation in such light‐demanding species. Lower stature high‐elevation plants have wider branching angles and greater branching ratios (number of branches/number of internodes) than low‐elevation plants. Compact growth at high elevation may be related to strong winds and irradiance. Plants from different elevations had distinct growth patterns during the common‐garden experiment. This could be of importance in Mediterranean‐climate areas characterized by highly unpredictable precipitation regimes. Also, liberation of growth‐suppressed seedlings may follow different environmental signals in low‐ and high‐habitats, which might explain such time‐dependent responses to optimal conditions under cultivation. While these greenhouse‐grown N. pumilio saplings showed heritable differences in plant architectural traits and leafing phenology, it was not clear how the genotypes characteristic of particular elevations would respond to longer growing seasons such as those predicted under global warming.  相似文献   

5.
Bioenergy production is driving modifications to native plant species for use as novel biofuel crops. Key aims are to increase crop growth rates and to enhance conversion efficiency by reducing biomass recalcitrance to digestion. However, selection for these biofuel‐valuable traits has potential to compromise plant defenses and alter interactions with pests and pathogens. Insect‐vectored plant viruses are of particular concern because perennial crops have potential to serve as virus reservoirs that influence regional disease dynamics. In this study, we examined relationships between growth rates and biomass recalcitrance in five switchgrass (Panicum virgatum) populations, ranging from near‐wildtype to highly selected cultivars, in a common garden trial. We measured biomass accumulation rates and assayed foliage for acid detergent lignin, neutral detergent fiber, in vitro neutral detergent fiber digestibility and in vitro true dry matter digestibility. We then evaluated relationships between these traits and susceptibility to a widely distributed group of aphid‐transmitted Poaceae viruses (Luteoviridae: Barley and cereal yellow dwarf viruses, B/CYDVs). Virus infection rates and prevalence were assayed with RT‐PCR in the common garden, in greenhouse inoculation trials, and in previously established switchgrass stands across a 300‐km transect in Michigan, USA. Aphid host preferences were quantified in a series of arena host choice tests with field‐grown foliage. Contrary to expectations, biomass accumulation rates and foliar digestibility were not strongly linked in switchgrass populations we examined, and largely represented two different trait axes. Natural B/CYDV prevalence in established switchgrass stands ranged from 0% to 28%. In experiments, susceptibility varied notably among switchgrass populations and was more strongly predicted by potential biomass accumulation rates than by foliar digestibility; highly selected, productive cultivars were most virus‐susceptible and most preferred by aphids. Evaluation and mitigation of virus susceptibility of new biofuel crops is recommended to avert possible unintended consequences of biofuel production on regional pathogen dynamics.  相似文献   

6.
The most promising traits identified in wheat to raise yield potential via an increase in biomass accumulation are stomatal conductance and stomatal‐conductance‐related traits, such as carbon isotope discrimination (CID) and photosynthetic rate. The evaluation of the extent of genetic variation and the mapping of chromosomal regions controlling these traits are essential for the development of effective breeding strategies in durum wheat. A population of 161 F2‐derived, F8–F9 recombinant inbred lines obtained from a cross between durum wheat (Triticum turgidum ssp. durum) cultivars Ofanto and Cappelli was phenotyped for heading date, plant height, leaf porosity, CID and chlorophyll concentration (estimated through the SPAD index) for 2007/2008 and 2008/2009 seasons, at Ottava, Sardinia (Italy) under irrigated conditions. The genotype mean heritability for leaf porosity, CID and chlorophyll concentration was moderate in size. Six quantitative trait loci were detected for leaf porosity, four for chlorophyll concentration, but only one for CID, because of the small variation expressed in the population for this trait under these experimental conditions. The quantitative trait loci for leaf porosity located on chromosome 3B appear to be more stable with respect to the others, and different microsatellite markers are positioned within the interval of the quantitative trait loci, or in their vicinity, that represent useful tools in programmes for selection assisted by molecular markers.  相似文献   

7.

Key message

Four genetic regions associated with water use traits, measured at different levels of plant organization, and with agronomic traits were identified within a previously reported region for terminal water deficit adaptation on linkage group 2. Close linkages between these traits showed the value of phenotyping both for agronomic and secondary traits to better understand plant productive processes.

Abstract

Water saving traits are critical for water stress adaptation of pearl millet, whereas maximizing water use is key to the absence of stress. This research aimed at demonstrating the close relationship between traits measured at different levels of plant organization, some putatively involved in water stress adaptation, and those responsible for agronomic performance. A fine-mapping population of pearl millet, segregating for a previously identified quantitative trait locus (QTL) for adaptation to terminal drought stress on LG02, was phenotyped for traits at different levels of plant organization in different experimental environments (pot culture, high-throughput phenotyping platform, lysimeters, and field). The linkages among traits across the experimental systems were analysed using principal component analysis and QTL co-localization approach. Four regions within the LG02-QTL were found and revealed substantial co-mapping of water use and agronomic traits. These regions, identified across experimental systems, provided genetic evidence of the tight linkages between traits phenotyped at a lower level of plant organization and agronomic traits assessed in the field, therefore deepening our understanding of complex traits and then benefiting both geneticists and breeders. In short: (1) under no/mild stress conditions, increasing biomass and tiller production increased water use and eventually yield; (2) under severe stress conditions, water savings at vegetative stage, from lower plant vigour and fewer tillers in that population, led to more water available during grain filling, expression of stay-green phenotypes, and higher yield.
  相似文献   

8.
Drought susceptibility and low genetic variability are the major constraints of lentil (Lens culinaris Medik.) production worldwide. Development of an efficient pre-field drought phenotyping technique and identification of diversified drought tolerant lentil genotype(s) are therefore vital and necessary. Two separate experiments were conducted using thirty diverse lentil genotypes to isolate drought tolerant genotype(s) as well as to assess their diversity. In both of the experiments, significant (p ≤ 0.01) variation in genotype (G), treatment (T) and G X T was observed for most of the studied traits. In experiment I, genotypes were examined for drought tolerance at the seedlings stage under hydroponic conditions by assessing root and shoot traits. Among the 30 genotypes studied, BM-1247, BM-1227 and BM-502 were selected as highly tolerant to drought stress as they showed maximum seedling survivability and minimum reduction in growth parameters under drought stress. In experiment II, the genotypes were assayed for diversity and drought stress tolerance based on morphological traits grown under field condition. Drought stress caused a substantial reduction in yield attributing traits, however, the genotypes BM-1247, BM-981, BM-1227 and BM-502 were categorized as drought tolerant genotypes with less than 20% yield reduction. The field screening result of drought stress tolerance was coincided well with the results of laboratory screening. Genetic divergence study reflected the presence of considerable diversity among the genotypes. Considering laboratory and field screening results, the genotypes, BM-1247, BM-1227, BM-981 and BM- 502 were selected as the best drought tolerant genotypes. This information can be exploited for further breeding in developing drought tolerance in lentil.  相似文献   

9.
A number of hypotheses have been proposed about the association between developmental stability phenotypic variability, heritability, and environmental stress. Stress is often considered to increase both the asymmetry and phenotypic variability of bilateral traits, although this may depend on trait heritability. Empirical studies of such associations often yield inconsistent results. This may reflect the diversity of traits and conditions used or a low repeatability of any associations. To test for repeatable associations between these variables, multiply replicated experiments were undertaken on Drosophila melanogaster using a combination stress at the egg, larval and adult stages of reduced protein, ethanol in the medium, and a cold shock. Both metric and meristic traits were measured and levels of heritable variation for each trait estimated by maximum likelihood and parent-offspring regression over three generations. Trait means were reduced by stress, whereas among-individual variation increased Fluctuating asymmetry (FA) was increased by stress in some cases, but few comparisons were significant. Only one trait orbital bristle, showed consistent increases in FA. Changes in trait means, trait phenotypic variability, and developmental stability as a result of stress were not correlated. Extreme phenotypes tended to have higher levels of FA but only the results for orbital bristles were significant. All traits had low to intermediate heritabilities except orbital bristle, which showed no heritable variation. Only traits with low heritability and high levels of phenotypic variability may show consistent increases in FA under stress. Overall, the independence of phenotypic variability, plasticity, and the developmental stability of traits extend to changes in these measures under stressful conditions.  相似文献   

10.
Durum wheat is an important staple food crop in Tunisia and other Mediterranean countries and is grown in various climatic conditions. Production and yield are however severely limited not only by drought events but also by reduced levels of nitrogen fertilisation. A study was carried out at two locations in the sub‐humid area of Tunisia: Mateur in 2009–10 and 2010–11 and Beja in 2011–12 and 2012–13 under rainfed conditions. Four durum wheat genotypes (landraces: Bidi, Azizi; improved: Om Rabia, Khiar) were evaluated for nitrogen agronomic efficiency and related agronomic traits under various nitrogen rates: 0, 50, 100, 150, 200 and 250 kg N ha?1, with three replications. There was a significant interaction effect (P ≤ 0.001) environments × genotypes × N treatments for grain yield (GY), biomass yield (BY), harvest index (HI), partial factor productivity of applied nitrogen (PFPN) and nitrogen agronomic use efficiencies (NAE). GY was the most affected trait by nitrogen applied showing an increase of 94% under high N treatment (250 kg N ha?1) compared to control plots without N treatments. A significant linear regression exists between GY (0 N) and GY for the different N rates (r = 0.70; P < 0.001). This effect was more pronounced for improved genotypes than landraces for all parameters excepting BY and NAEBY. BY showed +11% increase in landraces than improved genotypes. PFPN showed an average decrease of 65% under high‐N fertilisation with 10% prevalence for improved genotypes. Landraces tend to promote vegetative growth while grain filling efficiency was higher for improved genotypes.  相似文献   

11.
Adaptive‐trait correlations in plant ecology are often calculated among species, but in order to develop and characterize plant materials of target species for restoration, intraspecific comparisons are of greatest relevance. Elymus elymoides (Raf.) Swezey (bottlebrush squirreltail) is an important component of sagebrush‐steppe communities in the northern Intermountain West, United States. We evaluated 32 accessions of E. elymoides subspecies C, a newly recognized unnamed taxon, in the field and greenhouse. Our objectives were to assess genetic diversity for putatively adaptive traits, to elucidate biological relationships among biomass, morphological, and phenological traits through correlation analysis, and to gather evidence suggesting whether these traits might be truly adaptive, that is, related to collection‐site variables. We observed a positive correlation (r = 0.73;p < 0.01) between greenhouse shoot and root biomass among accessions, suggesting that shoot and root biomass are not in an inherent trade‐off relationship across accessions. In addition, accessions with higher greenhouse shoot biomass possessed lower specific leaf area (r = ?0.43;p < 0.05) and lower specific root length (r = ?0.47,p < 0.05). Correlations between greenhouse and field‐measured productivity traits were not significant (p > 0.05), indicating seedling performance is not predictive of mature‐plant performance. Elevation was the collection‐site variable most closely correlated with plant‐measured traits, particularly phenological dates, whereas average annual precipitation was the least significant variable. Therefore, elevation may be used as an easily applied metric to match subspecies C plant material to restoration site in the northern Intermountain West.  相似文献   

12.
The life cycles of plants are characterized by two major life history transitions—germination and the initiation of flowering—the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after‐ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.  相似文献   

13.
We sampled four wild populations of the highly autogamous Spergularia marina (Caryophyllaceae) in California to detect and to measure the magnitude of within- and among-population sources of phenotypic variation in gender and floral traits. From flowers and fruits collected from field and greenhouse-raised plants, we measured ovule number, seed number, mean seed mass, pollen production (greenhouse families only), mean pollen grain volume (greenhouse families only), anther number, anther/ovule ratio, pollen/ovule ratio (estimated using different flowers for pollen than for ovules; greenhouse families only), petal number, and petal size. Using greenhouse-raised genotypes, variation among maternal families nested within populations was evaluated for each trait to determine whether populations differ in the degree of maternally transmitted phenotypic variation. For each population, we used 15 greenhouse-raised maternal families to estimate the broad-sense heritability and genetic coefficient of variation of each floral trait. The magnitude and statistical significance of broad-sense heritability estimates were trait- and population-specific. Each population was characterized by a different combination of floral traits that expressed significant maternally transmitted (presumably genetic) variation under greenhouse conditions. Flowers representing two populations expressed low levels of maternally transmitted variation (three or fewer of nine measured traits exhibited significant maternal family effects on phenotype), while flowers representing the other two populations exhibited significant maternal family effects on phenotype for five or more traits. Our ability to detect statistically significant differences among the four populations depended upon the conditions under which plants were grown (field vs. greenhouse) and on the floral trait observed. Field-collected flowers exhibited significant differences among population means for all traits except anther number. Flowers sampled from greenhouse-raised maternal families differed among populations for all traits except ovule number, seed number, and petal size. We detected negligible evidence that genetic correlations constrain selection on floral traits in Spergularia marina.  相似文献   

14.
Drought stress is one of the major abiotic stresses affecting lint yield and fibre quality in cotton. With increase in population, degrading natural resources and frequent drought occurrences, development of high yielding, drought tolerant cotton cultivars is critical for sustainable cotton production across countries. Six Gossypium hirsutum genotypes identified for drought tolerance, wider adaptability and better fibre quality traits were characterized for various morpho-physiological and biochemical characters and their molecular basis was investigated under drought stress. Under drought conditions, genotypes revealed statistically significant differences for all the morpho-physiological and biochemical traits. The interaction (genotype × treatment) effects were highly significant for root length, excised leaf water loss and cell membrane thermostability indicating differential interaction of genotypes under control and stress conditions. Correlation studies revealed that under drought stress, relative water content had significant positive correlation with root length and root-to-shoot ratio while it had significant negative correlation with excised leaf water loss, epicuticular wax, proline, potassium and total soluble sugar content. Analysis of expression of fourteen drought stress related genes under water stress indicated that both ABA dependent and ABA independent mechanisms of drought tolerance might be operating differentially in the studied genotypes. IC325280 and LRA5166 exhibited ABA mediated expression of stress responsive genes and traits. Molecular basis of drought tolerance in IC357406, Suraj, IC259637 and CNH 28I genotypes could be attributed to ABA independent pathway. Based on physiological phenotyping, the genotypes IC325280 and IC357406 were identified to possess better root traits and LRA5166 was found to have enhanced cellular level tolerance. Variety Suraj exhibited good osmotic adjustment and better root traits to withstand water stress. The identified drought component trait(s) in specific genotypes would pave way for their pyramiding through marker assisted cotton breeding.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00890-3) contains supplementary material, which is available to authorized users.  相似文献   

15.
Epigenomes have remarkable potential for the estimation of plant traits. This study tested the hypothesis that natural variation in DNA methylation can be used to estimate industrially important traits in a genetically diverse population of Populus balsamifera L. (balsam poplar) trees grown at two common garden sites. Statistical learning experiments enabled by deep learning models revealed that plant traits in novel genotypes can be modelled transparently using small numbers of methylated DNA predictors. Using this approach, tissue type, a nonheritable attribute, from which DNA methylomes were derived was assigned, and provenance, a purely heritable trait and an element of population structure, was determined. Significant proportions of phenotypic variance in quantitative wood traits, including total biomass (57.5%), wood density (40.9%), soluble lignin (25.3%) and cell wall carbohydrate (mannose: 44.8%) contents, were also explained from natural variation in DNA methylation. Modelling plant traits using DNA methylation can capture tissue‐specific epigenetic mechanisms underlying plant phenotypes in natural environments. DNA methylation‐based models offer new insight into natural epigenetic influence on plants and can be used as a strategy to validate the identity, provenance or quality of agroforestry products.  相似文献   

16.
17.
Semi‐natural mountain grasslands are increasingly exposed to environmental stress under climate change. However, which are the environmental factors that limit plants in these grasslands? Also, is the present management effective against these changes? Fitness‐related functional traits may offer a way to detect changes in performance and provide new insights into their vulnerability to climate change. We investigated changes in performance and variability of functional traits of the mountain grassland target species Arnica montana along a climate gradient in Central German low mountain ranges. This gradient represents at its lower end climate conditions that are expected at its upper end under future climate change. We measured vegetative, generative, and physiological traits to account for multiple ways of plant responses to the environment. Using mixed effects and multivariate models, we evaluated changes in trait values among individuals as well as the variability of their populations in order to assess performance under changing summer aridity and different management regimes. Fitness‐related performance of most traits showed strongly positive associations with reduced summer aridity at higher elevations, while only specific leaf area and leaf dry matter content showed no association. This suggests a higher performance level at less arid montane sites and that the physiological traits are less sensitive to this climate change factor. The coefficient of variation of almost all traits declined steadily with decreasing site aridity. We suggest that this reduced variability indicates a lower environmental stress level for A. montana toward its environmental optimum at montane elevations, especially because the trait performance increased simultaneously. Surprisingly, management factors and habitat characteristics had only low influence on both trait performance and variability. In summary, summer aridity had a stronger effect to shape the trait performance and variability of A. montana under increased environmental stress than management and other habitat characteristics.  相似文献   

18.
Screening methods for salinity tolerance: a case study with tetraploid wheat   总被引:19,自引:1,他引:18  
Munns  Rana  James  Richard A. 《Plant and Soil》2003,253(1):201-218
Fast and effective glasshouse screening techniques that could identify genetic variation in salinity tolerance were tested. The objective was to produce screening techniques for selecting salt-tolerant progeny in breeding programs in which genes for salinity tolerance have been introduced by either conventional breeding or genetic engineering. A set of previously unexplored tetraploid wheat genotypes, from five subspecies of Triticum turgidum, were used in a case study for developing and validating glasshouse screening techniques for selecting for physiologically based traits that confer salinity tolerance. Salinity tolerance was defined as genotypic differences in biomass production in saline versus non-saline conditions over prolonged periods, of 3–4 weeks. Short-term experiments (1 week) measuring either biomass or leaf elongation rates revealed large decreases in growth rate due to the osmotic effect of the salt, but little genotypic differences, although there were genotypic differences in long-term experiments. Specific traits were assessed. Na+ exclusion correlated well with salinity tolerance in the durum subspecies, and K+/Na+ discrimination correlated to a lesser degree. Both traits were environmentally robust, being independent of root temperature and factors that might influence transpiration rates such as light level. In the other four T. turgidum subspecies there was no correlation between salinity tolerance and Na+ accumulation or K+/Na+ discrimination, so other traits were examined. The trait of tolerance of high internal Na+ was assessed indirectly, by measuring chlorophyll retention. Five landraces were selected as maintaining green healthy leaves despite high levels of Na+ accumulation. Factors affecting field performance of genotypes selected by trait-based techniques are discussed.  相似文献   

19.
Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues.  相似文献   

20.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号