首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   65篇
  2023年   4篇
  2022年   3篇
  2021年   24篇
  2020年   12篇
  2019年   22篇
  2018年   11篇
  2017年   13篇
  2016年   26篇
  2015年   39篇
  2014年   41篇
  2013年   46篇
  2012年   49篇
  2011年   48篇
  2010年   25篇
  2009年   26篇
  2008年   40篇
  2007年   33篇
  2006年   24篇
  2005年   19篇
  2004年   26篇
  2003年   32篇
  2002年   17篇
  2001年   16篇
  2000年   12篇
  1999年   15篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   11篇
  1994年   9篇
  1993年   4篇
  1992年   20篇
  1991年   14篇
  1990年   18篇
  1989年   17篇
  1988年   13篇
  1987年   13篇
  1986年   19篇
  1985年   23篇
  1984年   13篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1974年   2篇
  1973年   3篇
  1970年   1篇
  1967年   3篇
排序方式: 共有865条查询结果,搜索用时 278 毫秒
1.
Structural maintenance of chromosome (SMC) proteins are key organizers of chromosome architecture and are essential for genome integrity. They act by binding to chromatin and connecting distinct parts of chromosomes together. Interestingly, their potential role in providing connections between chromatin and the mitotic spindle has not been explored. Here, we show that yeast SMC proteins bind directly to microtubules and can provide a functional link between microtubules and DNA. We mapped the microtubule-binding region of Smc5 and generated a mutant with impaired microtubule binding activity. This mutant is viable in yeast but exhibited a cold-specific conditional lethality associated with mitotic arrest, aberrant spindle structures, and chromosome segregation defects. In an in vitro reconstitution assay, this Smc5 mutant also showed a compromised ability to protect microtubules from cold-induced depolymerization. Collectively, these findings demonstrate that SMC proteins can bind to and stabilize microtubules and that SMC-microtubule interactions are essential to establish a robust system to maintain genome integrity.  相似文献   
2.
3.
Viscometric measurements were carried out on well-characterized apple, citrus, sugar-beet pectins in order to analyse the effect of the nature and the amount of substituents (methyl, amide, acetyl groups) and of the rhamnose content on the flexibility of the polymeric backbone. Through the dependence of the intrinsic viscosity with the ionic strength the flexibility parameter B was determined. B values between 0.072 and 0.017 indicate that pectins are relatively stiff molecules. However, an increase in flexibility is noticeable with the rise of the rhamnose content and of the amount of amide groups of the pectic acids. The flexibility is also sensitive to the degree of methylation.  相似文献   
4.
Tyrosine hydroxylase, a key enzyme in the biosynthesis of catecholamines, was previously shown to be phosphorylated on four distinct serine residues in PC12 cell cultures, each one being specific for the kinase system involved (McTigue, M., Cremins, J., and Halegoua, S. (1985) J. Biol. Chem. 260, 9047-9056). A cAMP- and Ca2+-independent protein kinase was found to be associated with tyrosine hydroxylase purified from rat pheochromocytoma tumor. The use of this activity and the availability of a large amount of purified tyrosine hydroxylase allowed identification of the site phosphorylated by this kinase activity. A peptide of 1.5 kDa (about 12 residues long), carrying the phosphorylation site, was released from 32P-labeled tyrosine hydroxylase by limited proteolysis with trypsin. This peptide was isolated from trypsinized tyrosine hydroxylase by sequential gel filtration and ion exchange chromatographies. Analysis by thin layer chromatography of an acid hydrolysate of the peptide revealed that it contained phosphoserine. The sequence determination of the peptide showed that it corresponded to the residues 38-45 in the tyrosine hydroxylase primary structure (Arg-Gln-Ser(P)-Leu-Ile-Glu-Asp-Ala). Thus, the associated kinase phosphorylated Ser-40, one of the phosphorylation sites for the cAMP-dependent protein kinase also found in rat pheochromocytoma tumors. These results are compared to those recently appearing in a report by Campbell et al. (Campbell, D. G., Hardie, D. G., and Vulliet, P. R. (1986) J. Biol. Chem. 261, 10489-10492).  相似文献   
5.
Using an anti-tyrosine hydroxylase antiserum, the whole of catecholaminergic perikarya of the myelencephalon and metencephalon of the sheep were visualized immunocytochemically. Compared with those of the rat, these neuronal groups in the sheep were featured, firstly, by a greater dispersion relative to their perikarya and, secondly, by the absence of A3 and A4 nuclei described by Dahlstrom and Fuxe.  相似文献   
6.
7.
Osteopontin (OPN) is now recognized as an important cytokine and extracellular integrin‐binding protein at the crossroads of inflammation and homeostasis. In a previous study, we found that OPN gene (SPP1) polymorphisms are associated with milk performance traits and somatic cell score (SCS), a parameter used to estimate the genetic value of udder health in dairy cattle. In this study, we assessed whether the genetic variations had an impact on SPP1 promoter activity, immune response and the level of OPN secreted into milk. The influence of DNA polymorphisms on the promoter activity of SPP1 was confirmed in vitro. To measure the impact of the genetic variations on OPN secretion into milk, we measured OPN levels in both plasma and milk throughout lactation. Cows were grouped by the OPN haplotypes associated with a high (H2 × H3) or low (H1 × H4) SCS. For both H2 × H3 and H1 × H4, the OPN level in plasma remained low throughout lactation, although the concentration in the milk of H1 × H4 cows increased more in late lactation. Moreover, the macrophages of H1 × H4 cows expressed a lower SPP1 and proinflammatory IL6 in response to infection. Regarding the immune cell response, cows with the genetic potential to secrete higher OPN levels during late lactation had macrophages expressing fewer proinflammatory cytokines, a situation that might explain the genetic association with low somatic cells. Although OPN's favorable roles during late lactation remain to be elucidated, the tissue remodeling properties associated with OPN may be beneficial for reducing the incidence of infection during the transition period in lactating cows.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号