首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role played by anatomical factors in ACL injury remains elusive. In this study, objective methods were used to characterize ACL volume, tibial slopes and notch geometry from ACL-injured and matched-control subjects. The study tested four hypotheses: (1) the medial tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, (2) the lateral tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, (3) the femoral intercondylar notch dimensions are smaller in the injured group compared to the non-injured group and (4) the ACL volume, tibial plateau slopes and intercondylar notch dimensions are all independent of each other. Fifty-four subjects were divided into two groups, those who had suffered a non-contact ACL injury and those who still had two healthy ACLs, matched to the injured subjects by gender, age, height and weight. The lateral tibial plateaus in the uninjured contralateral knees of the injured subjects had a significantly steeper posterior slope (1.8° vs. ?0.3°), a factor that potentially contributed to the ACL injury in the opposite knee. The intercondylar notch dimensions were found to be smaller in the injured subjects, potentially putting the ACL at risk of impingement, and intercondylar notch volume was correlated to ACL volume (r=0.58). Discriminant analysis showed that the notch width at the inlet was the best single predictor of ACL injury.  相似文献   

2.
It has been suggested that the repetitive nature of altered joint tissue loading which occurs after anterior cruciate ligament (ACL) rupture can contribute to the development of osteoarthritis (OA). However, changes in dynamic knee joint contact stresses after ACL rupture have not been quantified for activities of daily living. Our objective was to characterize changes in dynamic contact stress profiles that occur across the tibial plateau immediately after ACL transection. By subjecting sensor-augmented cadaveric knees to simulated gait, and analyzing the resulting contact stress profiles using a normalized cross-correlation algorithm, we tested the hypothesis that common changes in dynamic contact stress profiles exist after ACL injury. Three common profiles were identified in intact knees, occurring on the: (I) posterior lateral plateau, (II) posterior medial plateau, and (III) central region of the medial plateau. In ACL-transected knees, the magnitude and shape of the common dynamic stress profiles did not change, but their locations on the tibial plateau and the number of knees identified for each profile changed. Furthermore, in the ACL transected knees, a unique common contact stress profile was identified in the posterior region of the lateral plateau near the tibial spine. This framework can be used to understand the regional and temporal changes in joint mechanics after injury.  相似文献   

3.
Knee instability following anterior cruciate ligament (ACL) rupture compromises function and increases risk of injury to the cartilage and menisci. To understand the biomechanical function of the ACL, previous studies have primarily reported the net change in tibial position in response to multiplanar torques, which generate knee instability. In contrast, we retrospectively analyzed a cohort of 13 consecutively tested cadaveric knees and found distinct motion patterns, defined as the motion of the tibia as it translates and rotates from its unloaded, initial position to its loaded, final position. Specifically, ACL-sectioned knees either subluxated anteriorly under valgus torque (VL-subluxating) (5 knees) or under a combination of valgus and internal rotational torques (VL/IR-subluxating) (8 knees), which were applied at 15 and 30° flexion using a robotic manipulator. The purpose of this study was to identify differences between these knees that could be driving the two distinct motion patterns. Therefore, we asked whether parameters of bony geometry and tibiofemoral laxity (known risk factors of non-contact ACL injury) as well as in situ ACL force, when it was intact, differentiate knees in these two groups. VL-subluxating knees exhibited greater sagittal slope of the lateral tibia by 3.6 ± 2.4° (p = 0.003); less change in anterior laxity after ACL-sectioning during a simulated Lachman test by 3.2 ± 3.2 mm (p = 0.006); and, at the peak applied valgus torque (no internal rotation torque), higher posteriorly directed, in situ ACL force by 13.4 ± 11.3 N and 12.0 ± 11.6 N at 15° and 30° of flexion, respectively (both p ≤ 0.03). These results may suggest that subgroups of knees depend more on their ACL to control lateral tibial subluxation in response to uniplanar valgus and multiplanar valgus and internal rotation torques as mediated by anterior laxity and bony morphology.  相似文献   

4.
The knee is one of the most frequently injured joints in the human body. A recent study suggests that axial compressive loads on the knee may play a role in injury to the anterior cruciate ligament (ACL) for the flexed knee, because of an approximate 10 degrees posterior tilt in the tibial plateau (J. Orthop. Res. 16 (1998) 122-127). The hypothesis of the current study was that excessive axial compressive loads in the human tibio-femoral (TF) joint would cause relative displacement and rotation of the tibia with respect to the femur, and result in isolated injury to the ACL when the knee is flexed to 60 degrees , 90 degrees or 120 degrees . Sixteen isolated knees from eleven fresh cadaver donors (74.3+/-10.5 yr) were exposed to repetitive TF compressive loads increasing in intensity until catastrophic injury. ACL rupture was documented in 14/16 cases. The maximum TF joint compressive force for ACL failure was 5.1+/-2.1 kN for all flexion angles combined. For the 90 degrees flexed knee, the injury occurred with a relative anterior displacement of 5.4+/-3.8mm, a lateral displacement of 4.1+/-1.4mm, and a 7.8+/-7.0 degrees internal rotation of the tibia with respect to the femur.  相似文献   

5.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

6.
A three-dimensional model of the knee is used to study ligament function during anterior-posterior (a-p) draw, axial rotation, and isometric contractions of the extensor and flexor muscles. The geometry of the model bones is based on cadaver data. The contacting surfaces of the femur and tibia are modeled as deformable; those of the femur and patella are assumed to be rigid. Twelve elastic elements are used to describe the geometry and mechanical properties of the cruciate ligaments, the collateral ligaments, and the posterior capsule. The model is actuated by thirteen musculotendinous units, each unit represented as a three-element muscle in series with tendon. The calculations show that the forces applied during a-p draw are substantially different from those applied by the muscles during activity. Principles of knee-ligament function based on the results of in vitro experiments may therefore be overstated. Knee-ligament forces during straight a-p draw are determined solely by the changing geometry of the ligaments relative to the bones: ACL force decreases with increasing flexion during anterior draw because the angle between the ACL and the tibial plateau decreases as knee flexion increases; PCL force increases with increasing flexion during posterior draw because the angle between the PCL and the tibial plateau increases. The pattern of ligament loading during activity is governed by the geometry of the muscles spanning the knee: the resultant force in the ACL during isometric knee extension is determined mainly by the changing orientation of the patellar tendon relative to the tibia in the sagittal plane; the resultant force in the PCL during isometric knee flexion is dominated by the angle at which the hamstrings meet the tibia in the sagittal plane.  相似文献   

7.
BackgroundAccurate measurement of the tibiotalar alignment is important in radiographic outcome assessment of ankle arthrodesis (AA). In studies, various radiological methods have been used to measure the tibiotalar alignment leading to facultative misinterpretation of results. However, to our knowledge, no previous study has investigated the reliability of tibiotalar alignment measurement in AA. We aimed to investigate the reliability of four different methods of measurement of the frontal and sagittal tibiotalar alignment after AA, and to further clarify the most reliable method for determining the longitudinal axis of the tibia.MethodsThirty-eight weight bearing anterior to posterior and lateral ankle radiographs of thirty-seven patients who had undergone AA with a two screw fixation technique were selected. Three observers measured the frontal tibiotalar angle (FTTA) and the sagittal tibiotalar angle (STTA) using four different methods. The methods differed by the definition of the longitudinal tibial axis. Method A was defined by a line drawn along the lateral tibial border in anterior to posterior radiographs and along the posterior tibial border in lateral radiographs. Method B was defined by a line connecting two points in the middle of the proximal and the distal tibial shaft. Method C was drawn „freestyle”along the longitudinal axis of the tibia, and method D was defined by a line connecting the center of the tibial articular surface and a point in the middle of the proximal tibial shaft. Intra- and interobserver correlation coefficients (ICC) and repeated measurement ANOVA were calculated to assess measurement reliability and accuracy.ResultsAll four methods showed excellent inter- and intraobserver reliability for the FTTA and the STTA. When the longitudinal tibial axis is defined by connecting two points in the middle of the proximal and the distal tibial shaft, the highest interobserver reliability for the FTTA (ICC: 0.980; CI 95%: 0.966–0.989) and for the STTA (ICC: 0.997; CI 95%: 0.996–0.999) is provided. Intergroup analysis for FTTA measurements revealed a statistically significant difference between the method in which the lateral border of the tibia was used to determine the longitudinal axis of the tibia, and the other methods in which the longitudinal axis was defined by bisecting the tibia.ConclusionsWhen the longitudinal axis of the tibia is defined by connecting two points in the middle of the proximal and the distal tibial shaft for measuring the FTTA and STTA, the most favorable interobserver reliability is provided. Therefore, this method can be recommended for evaluating the frontal and the sagittal alignment on anterior to posterior and lateral radiographs after ankle arthrodesis.  相似文献   

8.
The knee is one of the most frequently injured joints in the human body. Approximately 91% of ACL injuries occur during sporting activities, usually from a non-contact event. The most common kinetic scenarios related with ACL injuries are internal twisting of the tibia relative to the femur or combined torque and compression during a hard landing. The hypothesis of this study was that the magnitudes and types of motion observed after ACL rupture would significantly change from the relative joint displacements present just before ACL injury. Compression or torsion experiments were conducted on 7 pairs of knee joints with repetitive tests at increasing intensity until catastrophic failure. ACL injury was documented in all cases at 5.4±2 kN of TF compression or 33±13 Nm of internal tibial torque. The femur displaced posteriorly relative to the tibia in pre-failure and with a higher magnitude in failure tests under both loading conditions. In compression experiments there was internal rotation of the tibia in pre-failure tests, but external rotation of the tibia after the ACL failed. In torsion experiments, failure occurred at 58±19° of internal tibial rotation, and valgus rotation of the femur increased significantly after ACL injury. These new data show that the joint motions can vary in magnitude and direction before and after failure of the ACL. Video-based studies consistently document external rotation of the tibia combined with valgus knee bending as the mechanism of ACL injury although these motions could be occurring after ACL rupture.  相似文献   

9.
Unlike the case with total knee arthroplasty, the femorotibial angle (FTA) after unicompartmental knee arthroplasty (UKA) does not directly depend on the inclination of the tibial component when the height of the joint line is maintained. This study analyzed the effects of the inclination of the tibial component in the coronal plane on the contact pressure of the implant-bone surface and the stresses on the proximal tibia. A two-dimensional, coronal plane model of the proximal tibia was subjected to finite-element analysis. Sixteen patterns of finite-element models of equal FTA were developed in which the inclination of tibial components ranged from 5 degrees valgus to 10 degrees varus in increments of 1 degrees. Stress concentration at the proximal medial diaphyseal cortex gradually increased as the inclination changed from valgus to varus. Maximum contact pressure on the metal-bone interface similarly changed and shifted from the lateral edge to the medial edge of the implant as the inclination changed to varus. It was found that even without changing FTA, the inclination of the tibial component might affect stress concentration and contact pressure in the proximal tibia after UKA. The results suggested that slight valgus inclination of the tibial component might be preferable to varus and even to 0 degrees (square) inclination so far as the stress distribution is concerned.  相似文献   

10.
Two-dimensional, finite element studies were conducted of the proximal tibia before and after joint arthroplasty. Equivalent-thickness models projected onto the mid-frontal plane were created for the natural, proximal tibia and for the proximal tibia with four different types of tibial plateau components. All components simulated bony ingrowth fixation, i.e. no cement layer existed between component and bone. In addition, the interface between component and bone was assumed to be intimately connected, representing complete bony ingrowth and a rigid state of fixation. Loads consisted of bi-condylar and uni-condylar forces. Results indicated that conventional plateau designs with central posts or multiple pegs led to higher stress magnitudes in the trabecular bone near the distal ends of the post/pegs and stress shielding at more proximal locations. A design without posts or pegs whose interface geometry mimics the epiphyseal plate minimizes bone stress shielding. An implant consisting of separate components covering each condyle was found effective in limiting component tilting and the consequent tensile stresses caused by non-symmetrical, uni-condylar loading.  相似文献   

11.
This work presents a finite element analysis of anterior cruciate ligament (ACL) impingement against the intercondylar notch during tibial external rotation and abduction, as a mechanism of noncontact ACL injuries. Experimentally, ACL impingement was measured in a cadaveric knee in terms of impingement contact pressure and six degrees-of-freedom tibiofemoral kinematics. Three-dimensional geometries of the ACL, femur and tibia were incorporated into the finite element model of the individual knee specimen. A fiber-reinforced model was adopted, which accounts for the anisotropy, large deformation, nonlinearity and incompressibility of the ACL. With boundary conditions specified based on the experimental tibiofemoral kinematics, the finite element analysis showed that impingement between the ligament and the lateral wall of intercondylar notch could occur when qthe knee at 45° was externally rotated at 29.1° and abducted at 10.0°. Strong contact pressure and tensile stress occurred at the impinging and nonimpinging sides of the ligament, respectively. The impingement force and contact area estimated from the model matched their counterparts from the corresponding cadaver experiment. The modeling and experimental approach provides a useful tool to characterize potential ACL impingement on a knee-specific basis, which may help elucidate the ACL injury mechanism and develop more effective treatments.  相似文献   

12.
Abstract

Quantitative computed tomography-based finite element (QCT-FE) modeling has potential to clarify the role of altered subchondral bone stiffness in osteoarthritis. The objective of this research was to evaluate different QCT-FE modeling and thresholding approaches to identify the method which best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Our results showed that separate modeling of proximal tibial cortical and trabecular bone offered little improvement in QCT-FE-predicted stiffness (0% to +3% improvement in explained variance) when compared to modeling the proximal tibia as a single structure. Based on the results of this study, we do not recommend separate modeling of cortical bone and trabecular bone when developing QCT-FE models of the proximal tibia for predicting subchondral bone stiffness.  相似文献   

13.
In the past few years there has been a considerable interest in the role of bone in osteoarthritis. Despite the increasing evidence of the involvement of bone in osteoarthritis, it remains very difficult to attribute the cause or effect of changes in subchondral bone to the process of osteoarthritis. Although osteoarthritis in mice provides a useful model to study changes in the subchondral bone, detailed quantification of these changes is lacking. Therefore, the goal of this study was to quantify subchondral bone changes in a murine osteoarthritis model by use of micro-computed tomography (micro-CT). We induced osteoarthritis-like characteristics in the knee joints of mice using collagenase injections, and after four weeks we calculated various 3D morphometric parameters in the epiphysis of the proximal tibia. The collagenase injections caused cartilage damage, visible in histological sections, particularly on the medial tibial plateau. Micro-CT analysis revealed that the thickness of the subchondral bone plate was decreased both at the lateral and the medial side. The trabecular compartment demonstrated a small but significant reduction in bone volume fraction compared to the contralateral control joints. Trabeculae in the collagenase-injected joints were thinner but their shape remained rod-like. Furthermore, the connectivity between trabeculae was reduced and the trabecular spacing was increased. In conclusion, four weeks after induction of osteoarthritis in the murine knee subtle but significant changes in subchondral bone architecture could be detected and quantified in 3D with micro-CT analysis.  相似文献   

14.
As a step towards developing a finite element model of the knee that can be used to study how the variables associated with a meniscal replacement affect tibio-femoral contact, the goals of this study were 1) to develop a geometrically accurate three-dimensional solid model of the knee joint with special attention given to the menisci and articular cartilage, 2) to determine to what extent bony deformations affect contact behavior, and 3) to determine whether constraining rotations other than flexion/extension affects the contact behavior of the joint during compressive loading. The model included both the cortical and trabecular bone of the femur and tibia, articular cartilage of the femoral condyles and tibial plateau, both the medial and lateral menisci with their horn attachments, the transverse ligament, the anterior cruciate ligament, and the medial collateral ligament. The solid models for the menisci and articular cartilage were created from surface scans provided by a noncontacting, laser-based, three-dimensional coordinate digitizing system with an root mean squared error (RMSE) of less than 8 microns. Solid models of both the tibia and femur were created from CT images, except for the most proximal surface of the tibia and most distal surface of the femur which were created with the three-dimensional coordinate digitizing system. The constitutive relation of the menisci treated the tissue as transversely isotropic and linearly elastic. Under the application of an 800 N compressive load at 0 degrees of flexion, six contact variables in each compartment (ie., medial and lateral) were computed including maximum pressure, mean pressure, contact area, total contact force, and coordinates of the center of pressure. Convergence of the finite element solution was studied using three mesh sizes ranging from an average element size of 5 mm by 5 mm to 1 mm by 1 mm. The solution was considered converged for an average element size of 2 mm by 2 mm. Using this mesh size, finite element solutions for rigid versus deformable bones indicated that none of the contact variables changed by more than 2% when the femur and tibia were treated as rigid. However, differences in contact variables as large as 19% occurred when rotations other than flexion/extension were constrained. The largest difference was in the maximum pressure. Among the principal conclusions of the study are that accurate finite element solutions of tibio-femoral contact behavior can be obtained by treating the bones as rigid. However, unrealistic constraints on rotations other than flexion/extension can result in relatively large errors in contact variables.  相似文献   

15.
Comparison of kinematics in the healthy and ACL injured knee using MRI   总被引:3,自引:0,他引:3  
Magnetic Resonance Imaging (MRI) was used to examine the characteristics of abnormal motion in the injured knee by mapping tibiofemoral contact. Eleven healthy subjects and 20 subjects with a unilateral ACL injury performed a leg-press against resistance. MRI scans of both knees at 15 degrees intervals from 0 degrees to 90 degrees of flexion were used to record the tibiofemoral contact pattern. The tibiofemoral contact pattern of the injured knees was more posterior on the tibial plateau than the healthy knees, particularly in the lateral compartment. The tibiofemoral contact pattern of the loaded knees did not differ from the unloaded knees. The difference in the tibiofemoral contact pattern in the ACL injured knee was associated with more severe knee symptoms, irrespective of the passive anterior laxity of the knee.  相似文献   

16.
IntroductionPreviously, a finite element (FE) model of the proximal tibia was developed and validated against experimentally measured local subchondral stiffness. This model indicated modest predictions of stiffness (R2 = 0.77, normalized root mean squared error (RMSE%) = 16.6%). Trabecular bone though was modeled with isotropic material properties despite its orthotropic anisotropy. The objective of this study was to identify the anisotropic FE modeling approach which best predicted (with largest explained variance and least amount of error) local subchondral bone stiffness at the proximal tibia.MethodsLocal stiffness was measured at the subchondral surface of 13 medial/lateral tibial compartments using in situ macro indentation testing. An FE model of each specimen was generated assuming uniform anisotropy with 14 different combinations of cortical- and tibial-specific density-modulus relationships taken from the literature. Two FE models of each specimen were also generated which accounted for the spatial variation of trabecular bone anisotropy directly from clinical CT images using grey-level structure tensor and Cowin’s fabric-elasticity equations. Stiffness was calculated using FE and compared to measured stiffness in terms of R2 and RMSE%.ResultsThe uniform anisotropic FE model explained 53–74% of the measured stiffness variance, with RMSE% ranging from 12.4 to 245.3%. The models which accounted for spatial variation of trabecular bone anisotropy predicted 76–79% of the variance in stiffness with RMSE% being 11.2–11.5%.ConclusionsOf the 16 evaluated finite element models in this study, the combination of Synder and Schneider (for cortical bone) and Cowin’s fabric-elasticity equations (for trabecular bone) best predicted local subchondral bone stiffness.  相似文献   

17.
Anterior tibial loading is a major factor involved in the anterior cruciate ligament (ACL) injury mechanism during ski impact landing. We sought to investigate the direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact of intact knee joints without quadriceps activation. Twelve porcine knee specimens were procured. Four specimens were used as non-impact control while the remaining eight were mounted onto a material-testing system at 70° flexion and subjected to simulated landing impact, which was successively repeated with incremental actuator displacement. Four specimens from the impacted group underwent pre-impact MRI for tibial plateau angle measurements while the other four were subjected to histology and microCT for cartilage morphology and volume assessment. The tibial plateau angles ranged from 29.4 to 38.8°. There was a moderate linear relationship (Y=0.16X; R2=0.64; p<0.001) between peak axial impact compressive load (Y) and peak anterior tibial load (X). The anterior and posterior regions in the impacted group sustained surface cartilage fraying, superficial clefts and tidemark disruption, compared to the control group. MicroCT scans displayed visible cartilage deformation for both anterior and posterior regions in the impacted group. Due to the tibial plateau angle, increased axial impact compressive load can directly elevate anterior tibial load and hence contribute to ACL failure during simulated landing impact. Axial impact compressive load resulted in shear cartilage damage along anterior–posterior tibial plateau regions, due to its contribution to anterior tibial loading. This mechanism plays an important role in elevating ACL stress and cartilage deformation during impact landing.  相似文献   

18.
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.  相似文献   

19.
Bone is integral to the pathogenesis of osteoarthritis (OA). Whether the bone area of the tibial plateau changes over time in subjects with knee OA is unknown. We performed a cohort study to describe this and identify factors that might influence the change. One hundred and twenty-six subjects with knee OA underwent baseline knee radiography and magnetic resonance imaging on their symptomatic knee. They were followed up with a repeatmagnetic resonance image of the same knee approximately 2 years later. The bone area of the tibial plateau was measured at baseline and follow-up. Risk factors assessed at baseline were tested for their association with change in tibial plateau bone area over time. One hundred and seventeen subjects completed the study. The medial and lateral tibial plateau bone areas increased by 2.2 ± 6.9% and 1.5 ± 4.3% per year, respectively. Being male (P = 0.001), having a higher body mass index (P = 0.002), and having a higher baseline grade of medial joint-space narrowing (P = 0.01) were all independently and positively associated with an increased rate of enlargement of bone area of the medial tibial plateau. A larger baseline bone area of the medial tibial plateau was inversely associated with the rate of increase of that area (P < 0.001). No factor examined affected the rate of increase of the bone area of the lateral tibial plateau. In subjects with established knee OA, tibial plateau bone area increases over time. The role of subchondral bone change in the pathogenesis of knee OA will need to be determined but may be one explanation for the mechanism of action of risk factors such as body mass index on knee OA.  相似文献   

20.
Surface mesh reconstructions of bones are often required to define landmark-based coordinate systems, regions of interest and morphological features when studying the soft tissues of the knee from MRI scans. This study reports the variability, agreement and reliability of osseous landmarks to better understand their downstream effects. Fifteen landmarks were defined on the distal femur and twelve on the proximal tibia. Surface meshes were created from twenty right knee MRI scans with a mean subject age of 30.9 years. A single observer identified landmarks on all twenty knees, while three observers repeated the observations three times on a subset of eight knees. All observations were aligned to the Procrustes mean shapes. Principal component analysis was used to study inter-subject variability and two-way ANOVA for inter- and intra-observer agreement and reliability. Inter-subject landmark variation ranged from 0.6 to 5.26 mm, while inter- and intra-observer agreement were at most 5.1 and 5.69 mm respectively. Between-observer reliability ranged from 0.07 to 0.98 while within-observer values were between 0.51 and 0.98. Landmarks derived from fitted spheres or circles often performed well, while most others had their poorest agreement or greatest variation limited to only one or two cardinal directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号