首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid development of next generation sequencing (NGS) technologies in recent years has made whole genome sequencing of bacterial genomes widely accessible. However, it is often unnecessary or not feasible to sequence the whole genome for most applications of genetic analyses in bacteria. Selectively capturing defined genomic regions followed by NGS analysis could be a promising approach for high-resolution molecular typing of a large set of strains. In this study, we describe a novel and straightforward PCR-based target-capturing method, hairpin-primed multiplex amplification (HPMA), which allows for simultaneous amplification of numerous target genes. To test the feasibility of NGS-based strain typing using HPMA, 20 target gene sequences were simultaneously amplified with barcode tagging in each of 41 Salmonella strains. The amplicons were then pooled and analyzed by 454 pyrosequencing. Analysis of the sequence data, as an extension of multilocus sequence typing (MLST), demonstrated the utility and potential of this novel typing method, MLST-seq, as a high-resolution strain typing method. With the rapidly increasing sequencing capacity of NGS, MLST-seq or its variations using different target enrichment methods can be expected to become a high-resolution typing method in the near future for high-throughput analysis of a large collection of bacterial strains.  相似文献   

2.
High‐throughput sequencing (HTS) of PCR amplicons is becoming the method of choice to sequence one or several targeted loci for phylogenetic and DNA barcoding studies. Although the development of HTS has allowed rapid generation of massive amounts of DNA sequence data, preparing amplicons for HTS remains a rate‐limiting step. For example, HTS platforms require platform‐specific adapter sequences to be present at the 5′ and 3′ end of the DNA fragment to be sequenced. In addition, short multiplex identifier (MID) tags are typically added to allow multiple samples to be pooled in a single HTS run. Existing methods to incorporate HTS adapters and MID tags into PCR amplicons are either inefficient, requiring multiple enzymatic reactions and clean‐up steps, or costly when applied to multiple samples or loci (fusion primers). We describe a method to amplify a target locus and add HTS adapters and MID tags via a linker sequence using a single PCR. We demonstrate our approach by generating reference sequence data for two mitochondrial loci (COI and 16S) for a diverse suite of insect taxa. Our approach provides a flexible, cost‐effective and efficient method to prepare amplicons for HTS.  相似文献   

3.
In order to develop a typing and identification method for van gene containing Enterococcus faecium, two multiplex PCR reactions were developed for use in HRM-PCR (High Resolution Melt-PCR): (i) vanA, vanB, vanC, vanC23 to detect van genes from different Enterococcus species; (ii) ISR (intergenic spacer region between the 16S and 23S rRNA genes) to detect all Enterococcus species and obtain species and isolate specific HRM curves. To test and validate the method three groups of isolates were tested: (i) 1672 Enterococcus species isolates from January 2009 to December 2009; (ii) 71 isolates previously identified and typed by PFGE (pulsed-field gel electrophoresis) and MLST (multi-locus sequence typing); and (iii) 18 of the isolates from (i) for which ISR sequencing was done. As well as successfully identifying 2 common genotypes by HRM from the Austin Hospital clinical isolates, this study analysed the sequences of all the vanB genes deposited in GenBank and developed a numerical classification scheme for the standardised naming of these vanB genotypes. The identification of Enterococcus faecalis from E. faecium was reliable and stable using ISR PCR. The typing of E. faecium by ISR PCR: (i) detected two variable peaks corresponding to different copy numbers of insertion sequences I and II corresponding to peak I and II respectively; (ii) produced 7 melt profiles for E. faecium with variable copy numbers of sequences I and II; (iii) demonstrated stability and instability of peak heights with equal frequency within the patient sample (36.4±4.5 days and 38.6±5.8 days respectively for 192 patients); (iv) detected ISR-HRM types with as much discrimination as PFGE and more than MLST; and (v) detected ISR-HRM types that differentiated some isolates that were identical by PFGE and MLST. In conjunction with the rapid and accurate van genotyping method described here, this ISR-HRM typing and identification method can be used as a stable identification and typing method with predictable instability based on recombination and concerted evolution of the rrn operon that will complement existing typing methods.  相似文献   

4.

Background  

Rickettsiae closely related to the Malish strain, the reference Rickettsia conorii strain, include Indian tick typhus rickettsia (ITTR), Israeli spotted fever rickettsia (ISFR), and Astrakhan fever rickettsia (AFR). Although closely related genotypically, they are distinct serotypically. Using multilocus sequence typing (MLST), we have recently found that distinct serotypes may not always represent distinct species within the Rickettsia genus. We investigated the possibility of classifying rickettsiae closely related to R. conorii as R. conorii subspecies as proposed by the ad hoc committee on reconciliation of approaches to bacterial systematics. For this, we first estimated their genotypic variability by using MLST including the sequencing of 5 genes, of 31 rickettsial isolates closely related to R. conorii strain Malish, 1 ITTR isolate, 2 isolates and 3 tick amplicons of AFR, and 2 ISFR isolates. Then, we selected a representative of each MLST genotype and used multi-spacer typing (MST) and mouse serotyping to estimate their degree of taxonomic relatedness.  相似文献   

5.
A multi-virulence-locus sequence typing (MVLST) scheme was developed for subtyping Listeria monocytogenes, and the results obtained using this scheme were compared to those of pulsed-field gel electrophoresis (PFGE) and the published results of other typing methods, including ribotyping (RT) and multilocus sequence typing (MLST). A set of 28 strains (eight different serotypes and three known genetic lineages) of L. monocytogenes was selected from a strain collection (n > 1,000 strains) to represent the genetic diversity of this species. Internal fragments (ca. 418 to 469 bp) of three virulence genes (prfA, inlB, and inlC) and three virulence-associated genes (dal, lisR, and clpP) were sequenced and analyzed. Multiple DNA sequence alignment identified 10 (prfA), 19 (inlB), 13 (dal), 10 (lisR), 17 (inlC), and 16 (clpP) allelic types and a total of 28 unique sequence types. Comparison of MVLST with automated EcoRI-RT and PFGE with ApaI enzymatic digestion showed that MVLST was able to differentiate strains that were indistinguishable by RT (13 ribotypes; discrimination index = 0.921) or PFGE (22 profiles; discrimination index = 0.970). Comparison of MVLST with housekeeping-gene-based MLST analysis showed that MVLST provided higher discriminatory power for serotype 1/2a and 4b strains than MLST. Cluster analysis based on the intragenic sequences of the selected virulence genes indicated a strain phylogeny closely related to serotypes and genetic lineages. In conclusion, MVLST may improve the discriminatory power of MLST and provide a convenient tool for studying the local epidemiology of L. monocytogenes.  相似文献   

6.
天津地区气单胞菌分离株的鉴定与多位点序列分型   总被引:2,自引:0,他引:2  
[目的]研究气单胞菌菌株分类情况,并分析其致病性.[方法]采集环境样品和鱼类标本,分离并鉴定气单胞菌菌株,并运用多位点序列分型(Multilocus sequence typing,MLST)方法进行分类研究,利用PCR和测序方法分析毒力基因Aera、Hly、Aha1、GCAT和Nuc的分布.[结果]通过对分离菌株的16S rRNA基因进行分析,确认属于4种不同气单胞菌的7个分离株.发现所有菌株至少有1种毒力基因阳性,其中3株具有4种毒力基因.药物敏感实验显示,6株分离株对3种或3种以上抗菌素具有多重耐药性.最后,对看家基因gyrB、groL、gltA、metG、ppsA和recA进行分析,与MLST数据库中的等位基因序列比对,发现7株分离株均为新的不同的序列型(Sequence type,ST).[结论]气单胞菌具有较高的遗传多样性.  相似文献   

7.
We describe a rapid and easily automated phylogenetic grouping technique based on analysis of bacterial genome single-nucleotide polymorphisms (SNPs). We selected 13 SNPs derived from a complete sequence analysis of 11 essential genes previously used for multilocus sequence typing (MLST) of 30 Escherichia coli strains representing the genetic diversity of the species. The 13 SNPs were localized in five genes, trpA, trpB, putP, icdA, and polB, and were selected to allow recovery of the main phylogenetic groups (groups A, B1, E, D, and B2) and subgroups of the species. In the first step, we validated the SNP approach in silico by extracting SNP data from the complete sequences of the five genes for a panel of 65 pathogenic strains belonging to different E. coli pathovars, which were previously analyzed by MLST. In the second step, we determined these SNPs by dideoxy single-base extension of unlabeled oligonucleotide primers for a collection of 183 commensal and extraintestinal clinical E. coli isolates and compared the SNP phylotyping method to previous well-established typing methods. This SNP phylotyping method proved to be consistent with the other methods for assigning phylogenetic groups to the different E. coli strains. In contrast to the other typing methods, such as multilocus enzyme electrophoresis, ribotyping, or PCR phylotyping using the presence/absence of three genomic DNA fragments, the SNP typing method described here is derived from a solid phylogenetic analysis, and the results obtained by this method are more meaningful. Our results indicate that similar approaches may be used for a wide variety of bacterial species.  相似文献   

8.
The primer systems for the PCR detection of four house-keeping genes of bartonellae in clinical material were developed and tested. The tactics of the species RFLP typing was also developed and tested. The scheme of the species RFLP typing of bartonellae was tested using as an example two strains for the first time isolated in Russia from patients with endocarditis and fever of uncertain origin. The results of the typing were supported by sequencing of the amplicons obtained. According to the sequencing the isolates were attributed to the sub species Bartonella vinsonii, subsp. arupensis. The necessity of molecular epidemiological analysis of bartonelloses in Russia was substantiated.  相似文献   

9.
PCR permits the exponential and sequence-specific amplification of DNA, even from minute starting quantities. PCR is a fundamental step in preparing DNA samples for high-throughput sequencing. However, there are errors associated with PCR-mediated amplification. Here we examine the effects of four important sources of error—bias, stochasticity, template switches and polymerase errors—on sequence representation in low-input next-generation sequencing libraries. We designed a pool of diverse PCR amplicons with a defined structure, and then used Illumina sequencing to search for signatures of each process. We further developed quantitative models for each process, and compared predictions of these models to our experimental data. We find that PCR stochasticity is the major force skewing sequence representation after amplification of a pool of unique DNA amplicons. Polymerase errors become very common in later cycles of PCR but have little impact on the overall sequence distribution as they are confined to small copy numbers. PCR template switches are rare and confined to low copy numbers. Our results provide a theoretical basis for removing distortions from high-throughput sequencing data. In addition, our findings on PCR stochasticity will have particular relevance to quantification of results from single cell sequencing, in which sequences are represented by only one or a few molecules.  相似文献   

10.
Numerous computer-based statistical packages have been developed in recent years and it has become easier to analyze nucleotide sequence data and gather subsequent information that would not normally be available. Multilocus sequence typing (MLST) is used for characterizing isolates of bacterial and fungal species and uses nucleotide sequences of internal fragments of housekeeping genes. This method is finding a place in clinical microbiology and public health by providing data for epidemiological surveillance and development of vaccine policy. It adds greatly to our knowledge of the genetic variation that can occur within a species and has therefore been used for studies of population biology. Analysis requires the detailed interpretation of nucleotide sequence data obtained from housekeeping and nonhousekeeping genes. This is due to the amount of data generated from nucleotide sequencing and the information generated from an array of analytical tools improves our understanding of bacterial pathogens. This can benefit public health interventions and the development of enhanced therapies and vaccines. This review concentrates on the analytical tools used in MLST and their use in the clinical microbiology and public health fields.  相似文献   

11.
多位点序列分型分析空肠弯曲菌华东动物源分离株   总被引:4,自引:1,他引:3  
【目的】研究空肠弯曲菌菌株间的分子特征,对不同宿主来源的空肠弯曲菌进行分子分型研究。【方法】选择空肠弯曲菌的7个看家基因gltA、aspA、glnA、glyA、pgm、tkt和uncA作为目的基因,对2006-2008年间华东地区分离的42株空肠弯曲菌样本进行PCR扩增后测序。将测序结果软件分析并上传到数据库进行比对,将结果制作多位点序列分型(multilocus sequence typing,MLST)遗传进化树并进行分析。【结果】与数据库已有类型比对,发现了24个新的ST型,通过进化树得到其遗传关系。【结论】MLST方法对于研究空肠弯曲菌的菌株群体基因差异与进化趋势具有重要意义。  相似文献   

12.
Comparative characterization (molecular typing) of isolates within a bacterial species is one of the major problems in microbiology and epidemiology. However, it is rather difficult to correlate data obtained in various laboratories, because traditional, including molecular, methods employed in typing pathogenic microorganisms cannot be standardized. In 1998, Maiden et al. proposed multilocus sequence typing (MLST); through which alleles of several housekeeping genes are directly assessed by nucleotide sequencing, each unique allele combination determining a sequence type of a strain. The advantages of this approach are that the culturing of pathogenic microorganisms is avoided, as their gene fragments are amplified directly from biological samples, and that the sequencing data are unambiguous, easy to standardize, and electronically portable. The latter makes it possible to generate an expandable global database for each species at an Internet site, in order to use it for the purposes of genotyping pathogenic bacteria (and other infectious agents). MLST protocols have been elaborated for Neisseria meningitidis, Streptococcus pneumoniae, and Helicobacter pylori; those for Streptococcus pyogenes, Staphylococcus aureus, and Haemophilus influenzae are now being developed. Basic principles and the first results of MLST have been reviewed, including data on the distribution and microevolution of N. meningitidis clones causing epidemic meningococcal infection, the relative recombination and mutation rates in the N. meningitidis genome, the identification of antibiotic-resistant S. pneumoniae clones causing severe generalized infection, the grouping of H. pylori isolates from various geographic regions, etc.  相似文献   

13.
High resolution melting (HRM) analysis is gaining prominence as a method for discriminating DNA sequence variants. Its advantage is that it is performed in a real-time PCR device, and the PCR amplification and HRM analysis are closed tube, and effectively single step. We have developed an HRM-based method for Staphylococcus aureus genotyping. Eight single nucleotide polymorphisms (SNPs) were derived from the S. aureus multi-locus sequence typing (MLST) database on the basis of maximized Simpson's Index of Diversity. Only G?A, G?T, C?A, C?T SNPs were considered for inclusion, to facilitate allele discrimination by HRM. In silico experiments revealed that DNA fragments incorporating the SNPs give much higher resolving power than randomly selected fragments. It was shown that the predicted optimum fragment size for HRM analysis was 200 bp, and that other SNPs within the fragments contribute to the resolving power. Six DNA fragments ranging from 83 bp to 219 bp, incorporating the resolution optimized SNPs were designed. HRM analysis of these fragments using 94 diverse S. aureus isolates of known sequence type or clonal complex (CC) revealed that sequence variants are resolved largely in accordance with G+C content. A combination of experimental results and in silico prediction indicates that HRM analysis resolves S. aureus into 268 "melt types" (MelTs), and provides a Simpson's Index of Diversity of 0.978 with respect to MLST. There is a high concordance between HRM analysis and the MLST defined CCs. We have generated a Microsoft Excel key which facilitates data interpretation and translation between MelT and MLST data. The potential of this approach for genotyping other bacterial pathogens was investigated using a computerized approach to estimate the densities of SNPs with unlinked allelic states. The MLST databases for all species tested contained abundant unlinked SNPs, thus suggesting that high resolving power is not dependent upon large numbers of SNPs.  相似文献   

14.
Single-Nucleotide Polymorphism Phylotyping of Escherichia coli   总被引:2,自引:0,他引:2  
We describe a rapid and easily automated phylogenetic grouping technique based on analysis of bacterial genome single-nucleotide polymorphisms (SNPs). We selected 13 SNPs derived from a complete sequence analysis of 11 essential genes previously used for multilocus sequence typing (MLST) of 30 Escherichia coli strains representing the genetic diversity of the species. The 13 SNPs were localized in five genes, trpA, trpB, putP, icdA, and polB, and were selected to allow recovery of the main phylogenetic groups (groups A, B1, E, D, and B2) and subgroups of the species. In the first step, we validated the SNP approach in silico by extracting SNP data from the complete sequences of the five genes for a panel of 65 pathogenic strains belonging to different E. coli pathovars, which were previously analyzed by MLST. In the second step, we determined these SNPs by dideoxy single-base extension of unlabeled oligonucleotide primers for a collection of 183 commensal and extraintestinal clinical E. coli isolates and compared the SNP phylotyping method to previous well-established typing methods. This SNP phylotyping method proved to be consistent with the other methods for assigning phylogenetic groups to the different E. coli strains. In contrast to the other typing methods, such as multilocus enzyme electrophoresis, ribotyping, or PCR phylotyping using the presence/absence of three genomic DNA fragments, the SNP typing method described here is derived from a solid phylogenetic analysis, and the results obtained by this method are more meaningful. Our results indicate that similar approaches may be used for a wide variety of bacterial species.  相似文献   

15.
16.
Yersinia ruckeri is the causative agent of enteric redmouth in fish and one of the major bacterial pathogens causing losses in salmonid aquaculture. Previously typing methods, including restriction enzyme analysis, pulsed-field gel electrophoresis and multilocus enzyme electrophoresis (MLEE) have indicated a clonal population structure. In this work, we describe a multilocus sequence typing (MLST) scheme for Y.ruckeri based on the internal fragment sequence of six housekeeping genes. This MLST scheme was applied to 103 Y.ruckeri strains from diverse geographic areas and hosts as well as environmental sources. Sequences obtained from this work were deposited and are available in a public database (http://publmst.org/yruckeri/). Thirty different sequence types (ST) were identified, 21 of which were represented by a single isolate, evidencing high genetic diversity. ST2 comprised more than one-third of the isolates and was most frequently observed among isolates from trout. Two major clonal complexes (CC) were identified by eBURST analysis showing a common evolutionary origin for 94 isolates forming 21 STs into CC1 and for 6 isolates of 6 STs in the CC2. It was also possible to associate some unique ST with isolates from recent outbreaks in vaccinated salmonid fish.  相似文献   

17.
The eubacterial genus Wolbachia comprises one of the most abundant groups of obligate intracellular bacteria, and it has a host range that spans the phyla Arthropoda and Nematoda. Here we developed a multilocus sequence typing (MLST) scheme as a universal genotyping tool for Wolbachia. Internal fragments of five ubiquitous genes (gatB, coxA, hcpA, fbpA, and ftsZ) were chosen, and primers that amplified across the major Wolbachia supergroups found in arthropods, as well as other divergent lineages, were designed. A supplemental typing system using the hypervariable regions of the Wolbachia surface protein (WSP) was also developed. Thirty-seven strains belonging to supergroups A, B, D, and F obtained from singly infected hosts were characterized by using MLST and WSP. The number of alleles per MLST locus ranged from 25 to 31, and the average levels of genetic diversity among alleles were 6.5% to 9.2%. A total of 35 unique allelic profiles were found. The results confirmed that there is a high level of recombination in chromosomal genes. MLST was shown to be effective for detecting diversity among strains within a single host species, as well as for identifying closely related strains found in different arthropod hosts. Identical or similar allelic profiles were obtained for strains harbored by different insect species and causing distinct reproductive phenotypes. Strains with similar WSP sequences can have very different MLST allelic profiles and vice versa, indicating the importance of the MLST approach for strain identification. The MLST system provides a universal and unambiguous tool for strain typing, population genetics, and molecular evolutionary studies. The central database for storing and organizing Wolbachia bacterial and host information can be accessed at http://pubmlst.org/wolbachia/.  相似文献   

18.
A total of 41 Clostridium botulinum serotype E strains from different geographic regions, including Canada, Denmark, Finland, France, Greenland, Japan, and the United States, were compared by multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) analysis, variable-number tandem-repeat (VNTR) analysis, and botulinum neurotoxin (bont) E gene sequencing. The strains, representing environmental, food-borne, and infant botulism samples collected from 1932 to 2007, were analyzed to compare serotype E strains from different geographic regions and types of botulism and to determine whether each of the strains contained the transposon-associated recombinase rarA, involved with bont/E insertion. MLST examination using 15 genes clustered the strains into several clades, with most members within a cluster sharing the same BoNT/E subtype (BoNT/E1, E2, E3, or E6). Sequencing of the bont/E gene identified two new variants (E7, E8) that showed regions of recombination with other E subtypes. The AFLP dendrogram clustered the 41 strains similarly to the MLST dendrogram. Strains that could not be differentiated by AFLP, MLST, or bont gene sequencing were further examined using three VNTR regions. Both intact and split rarA genes were amplified by PCR in each of the strains, and their identities were confirmed in 11 strains by amplicon sequencing. The findings suggest that (i) the C. botulinum serotype E strains result from the targeted insertion of the bont/E gene into genetically conserved bacteria and (ii) recombination events (not random mutations) within bont/E result in toxin variants or subtypes within strains.  相似文献   

19.
We used multi-locus sequence typing (MLST) to investigate 35 yeast isolates representing the two genome-sequenced strains plus the type strain of Candida albicans, four isolates originally identified as Candida stellatoidea type I and 28 representing type strains of other species now regarded as synonymous with C. albicans. DNA from all 32 C. albicans synonyms readily formed PCR products with the C. albicans MLST primer sets. Their sequences placed all of them within the existing C. albicans clade structure, represented by 1516 isolates. One isolate, originally received as Mycotorula sinensis, was resistant to flucytosine, but no other unusual susceptibilities were found to polyene, azole or echinocandin antifungal agents. The four isolates of C. stellatoidea type I coclustered with two other sucrose-negative isolates, originally identified as examples of Candida africana, in a group of strains highly distinct from the majority of C. albicans. Our results not only confirm the synonymity of all the isolates with C. albicans but also confirm an obvious genotypic difference in the case of C. stellatoidea type I.  相似文献   

20.
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号