首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 944 毫秒
1.
The effect of oxidative stress, induced by Fe2+-EDTA system, on Na+,K+-ATPase, Na+/Ca2+ exchanger and membrane fluidity of synaptosomes was investigated. Synaptosomes isolated from gerbil whole forebrain were incubated in the presence of 200 M FeSO4-EDTA per mg of protein at 37°C for 30 min. The oxidative insult reduced Na+,K+-ATPase activity by 50.7 ± 5.0 % and Na+/Ca2+ exchanger activity measured in potassium and choline media by 47.1 ± 7.2 % and 46.7 ± 8.6 %, respectively. Membrane fluidity was also significantly reduced as observed with the 1,6-diphenyl-1,3,5-hexatriene probe. Stobadine, a pyridoindole derivative, prevented the decrease in membrane fluidity and in Na+/Ca2+ exchanger activity. The Na+,K+-ATPase activity was only partially protected by this lipid antioxidant, indicating a more complex mechanism of inhibition of this protein. The results of the present study suggest that the Na+/Ca2+ exchanger and the Na+,K+-ATPase are involved in oxidation stress-mediated disturbances of intracellular ion homeostasis and may contribute to cell injury.  相似文献   

2.
French bean seedlings grown on choline, ammoniacal and nitrate forms of nitrogen together with equivalent basal application of P as KH2PO4 were tested for nutrient uptake from the rhizosphere. Statistical tests on soil (rhizosphere and non-rhizosphere) and plant (root and shoot) revealed that with the exception of P, levels of all other estimated macro-(Na+, K+, Ca2+, Mg2+) and micro-nutrients (Fe2+, Mn2+, Zn2+) were significantly changed after 42 days growth as compared to 21 days growth period. The higher uptake into shoots of Na+, K+, Fe2+, Mn2+, Zn2+ and H2PO4 and higher biomass accumulation in the rhizosphere were associated with lower rhizosphere pH. The uptake of Ca2+ and Mg2+ increased with higher rhizosphere pH. While ammoniacal and choline forms decreased rhizosphere pH and increased the P uptake, nitrate form reversed the trend showing significant inverse relationship between shoot phosphate and rhizosphere pH. Calcium and iron were associated with an inhibition of the translocation of P from root to shoot. However, no causal relationships could be established. Both shoot weight and shoot P content were closely associated with a number of rhizosphere soil parameters. The paper forms a part of the Ph. D thesis submitted by the first author to the University of Wales, 1977.  相似文献   

3.
The interaction of a set of monovalent (Na+, K+) and divalent (Mg2+, Ca2+) metal cations with single-chain polyguluronate (periodic chain based on a dodecameric repeat unit, 21-helical conformation) is investigated using explicit-solvent molecular dynamics simulations (at 300 K and 1 bar). A total of 14 (neutralising) combinations of the different ions are considered (single type of cation or simultaneous presence of two types of cation, either in the presence or absence of chloride anions). The main observations are: (1) the chain conformation and intramolecular hydrogen bonding is insensitive to the counter-ion environment; (2) the binding of the cations is essentially non-specific for all ions considered (counter-ion atmosphere confined within a cylinder of high ionic density, but no well-defined binding sites); (3) the density and tightness of the distributions of the different cations within the counter-ion atmosphere follow the approximate sequence Ca2+>Mg2+>K+~Na+; (4) the solvent-separated binding of the cations to the carboxylate groups of the chain is frequent, and its occurrence follows the approximate sequence K+>Na+>Ca2+>Mg2+ (contact-binding events as well as the binding of a cation to multiple carboxylate groups are very infrequent); and (5) the counter-ion atmosphere typically leads to a complete screening of the chain charge within 1.0–1.2 nm of the chain axis and, for most systems, to a charge reversal at about 1.5 nm (i.e. the effective chain charge becomes positive at this distance and as high in magnitude as one-quarter of the bare chain charge, before slowly decreasing to zero). These findings agree well (in a qualitative sense) with available experimental data and predictions from simple analytical models, and provide further insight concerning the nature of alginate–cation interactions in aqueous solution.  相似文献   

4.
The Na+–K+ ATPase activity and SH group content were decreased whereas malondialdehyde (MDA) content was increased upon treating the porcine cardiac sarcolemma with xanthine plus xanthine oxidase, which is known to generate superoxide and other oxyradicals. Superoxide dismutase either alone or in combination with catalase and mannitol fully prevented changes in SH group content but the xanthine plus xanthine oxidase-induced depression in Na+–K+ ATPase activity as well as increase in MDA content were prevented partially. The Lineweaver-Burk plot analysis of the data for Na+–K+ ATPase activity in the presence of different concentrations of MgATP or Na+ revealed that the xanthine plus xanthine oxidase-induced depression in the enzyme activity was associated with a decrease in Vmax and an increase in Km for MgATP; however, Ka value for Na+ was decreased. Treatment of sarcolemma with H2O2 plus Fe2+, an hydroxyl and other radical generating system, increased MDA content but decreased both Na+–K+ ATPase activity and SH group content; mannitol alone or in combination with catalase prevented changes in SH group content fully but the depression in Na+–K+ ATPase activity and increase in MDA content were prevented partially. The depression in the enzyme activity by H2O2 plus Fe2+ was associated with a decrease in Vmax and an increase in Km for MgATP. These results indicate that the depressant effect of xanthine plus xanthine oxidase on sarcolemmal Na+–K+ ATPase may be due to the formation of superoxide, hydroxyl and other radicals. Furthermore, the oxyradical-induced depression in Na+–K+ ATPase activity may be due to a decrease in the affinity of substrate in the sarcolemmal membrane.  相似文献   

5.
Cation binding to brain plasma membranes has been studied using anionic sulfonate fluorescent probes. Ion affinity sequences follow the order Mg2+ > Ca2+ ? K+ > Cs+ > Na+ > Li+. The order of effectiveness, in increasing probe fluorescence, is the reverse of the affinity sequence for ions of the same charge. The affinity orders for erythrocyte membranes and dipalmitoyl lecithin are Mg2+ > Ca2+ ? Cs+ > K+ > Na+ > Li+ and Mg2+ > Ca2+ ? Li+ > Na+ > K+ > Cs+. These sequence variations are related to the differences in the nature of the ion binding sites. Heterogeneity in ion binding sites is demonstrated. Evidence is presented for the role of proteins in binding hydrophobic probes. The problem of separating specific conformational effects on ion binding from nonspecific charge neutralization effects is discussed. Pyrene excimer fluoresence rules out the possibility of extensive changes in mobility in the lipid phase on cation binding. Tetrodotoxin has been shown to inhibit Li+-, Na+-, and K+-induced fluorescence enancements of 1-anilino-8-naphthalene sulfonate bound to brain membranes.  相似文献   

6.
Root elongation by wheat seedlings (Triticum aestivum L. cv. Scout 66) was not inhibited by NaCl or KCl up to 130 mM in culture solutions or by high Na+ (2 mg g-1 FW) or K+ (4 mg g-1 FW) in the root tissue, provided that [Ca2+]>2 mM in the rooting medium. At [NaCl], [KCl], or [mannitol] >250 mOs, root elongation was progressively inhibited, irrespective of high [Ca2+]. In contrast, shoot elongation was sensitive to any diminution of water potential, and Ca2+ alleviated the toxicity only weakly. At solute concentrations <250 mOs, the following interactions were observed. Ca2+ alleviated Na+ and K+ toxicity to roots by at least three separate mechanisms. K+ was more toxic to roots than Na+, but Na+ was more toxic to shoots. Low levels of K+ relieved Na+ toxicity, but low levels of Na+ enhanced K+ toxicity. Tissue concentrations of Na+ were reduced by Ca2+ and K+ in the rooting medium, and tissue concentrations of K+ were enhanced by Ca2+ and Na+. Several hypotheses relating to salinity toxicity can be evaluated, at least for wheat seedlings. The osmoticant hypotheses (salinity intoxication occurs because of diminished water potential) is true for shoots at all salinity levels, but is true for roots only at high salinity. The Ca2+-displacement hypothesis (Na+ is toxic because it displaced Ca2+ from the cell surface) is correct, but often of minor importance. The K+-depletion hypothesis (Na+ is toxic because it causes a loss of K+ from plant tissues) is false. The Cl--toxicity hypothesis (the apparent toxicity of Na+ is induced by associated Cl-) is false. The results indicate that, apart from osmotic effects, high levels of Na+ in the rooting medium and in the tissues are not toxic unless Ca2+ is also deficient, a condition probably leading to inadequate compartmentation and excessive cytoplasmic accumulation. This study related growth to ion activities at plasma-membrane surfaces. These activities were computed by a Gouy-Chapman-Stern model then incorporated into non-linear growth models for growth versus toxicants and ameliorants.Key words: Calcium, potassium, salinity, sodium, toxicity   相似文献   

7.
The additional activation by monovalent cations of the (Ca2+ + Mg2+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied.The Ca2+-ATPase occurs in two different states. In the A-state the enzyme is virtually free of protein activator and the kinetics of Ca2+ activation is characterized by low apparent Ca2+ affinity and low maximum activity. In the B-state the enzyme is associated with activator and the kinetics is characterized by high Ca2+ affinity and high maximum activity.At optimum concentrations of Ca2+ the additional activation of the B-state by K+, NH4+, Na+ and Rb+ exceeded the corresponding activations of the A-state, and half-maximum activations by K+, NH4+, and Na+ were achieved at lower concentrations in the B-state than in the A-state. Li+ and Cs+ activated the two states almost equally but maximum activation was obtained at lower cation concentrations in the B-state than in the A-state.The activation of the B-state by the various cations decreased in the order K+ > NH4+ > Na+ = Rb+ > Li+ = Cs+. The A-state was activated almost equally by K+, Na+, NH4+, and Rb+ and to a smaller extent by Li+ and Cs+.At sub-optimum concentrations of Ca2+ high concentrations of monovalent cations (100 mM) activated the Ca2+-ATPase equally in the A-state and the B-state. In the absence of Ca2+ the monovalent cations inhibited the Mg2+-dependent ATPase in both types of membranes. This dependence on Ca2+ indicates that the monovalent cations interact with the Ca2+ sites in the B-state.The results suggest that K+ or Na+, or both, contribute to the regulation of the Ca2+ pump in erythrocytes.  相似文献   

8.
Two types of Na+-independent Mg2+ efflux exist in erythrocytes: (1) Mg2+ efflux in sucrose medium and (2) Mg2+ efflux in high Cl media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na+-independent Mg2+ efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K+,Cl- and Na+,K+,Cl-symport, Na+/H+-, Na+/Mg2+-, Na+/Ca2+- and K+(Na+)/H+ antiport, Ca2+-activated K+ channel and Mg2+ leak flux. We suggest that, in choline Cl medium, Na+-independent Mg2+ efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg2+ efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg2+ to the same degree. The Kd value for inhibition of [14C]choline efflux and for inhibition of Mg2+ efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg2+ efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg2+ efflux was reduced to the same degree by these inhibitors as was the [14C]choline efflux.  相似文献   

9.
The aim of the present study was to investigate the roles of Ca2+ and protein tyrosine kinase (PTK) in the insulin action on cell volume in fetal rat (20-day gestational age) type II pneumocytes. Insulin (100 nm) increased cell volume in the presence of extracellular Ca2+ (1 mm), while cell shrinkage was induced by insulin in the absence of extracellular Ca2+ (<1 nm). This insulin action in a Ca2+-containing solution was completely blocked by co-application of bumetanide (50 μm, an inhibitor of Na+/K+/2Cl cotransporter) and amiloride (10 μm, an inhibitor of epithelial Na+ channel), but not by the individual application of either bumetanide or amiloride. On the other hand, the insulin action on cell volume in a Ca2+-free solution was completely blocked by quinine (1 mm, a blocker of Ca2+-activated K+ channel), but not by bumetanide and/or amiloride. These observations suggest that insulin activates an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter in the presence of 1 mm extracellular Ca2+, that the stimulatory action of insulin on an amiloride-sensitive Na+ channel and a bumetanide-sensitive Na+/K+/2Cl cotransporter requires Ca2+, and that in a Ca2+-free solution insulin activates a quinine-sensitive K+ channel but not in the presence of 1 mm Ca2+. The insulin action on cell volume in a Ca2+-free solution was almost completely blocked by treatment with BAPTA (10 μm) or thapsigargin (1 μM, an inhibitor of Ca2+-ATPase which depletes the intracellular Ca2+ pool). Further, lavendustin A (10 μm, an inhibitor of receptor type PTK) blocked the insulin action in a Ca2+-free solution. These observations suggest that the stimulatory action of insulin on a quinine-sensitive K+ channel is mediated through PTK activity in a cytosolic Ca2+-dependent manner. Lavendustin A, further, completely blocked the activity of the Na+/K+/2Cl cotransporter in a Ca2+-free solution, but only partially blocked the activity of the Na+/K+/2Cl cotransporter in the presence of 1 mm Ca2+. This observation suggests that the activity of the Na+/K+/2Cl cotransporter is maintained through two different pathways; one is a PTK-dependent, Ca2+-independent pathway and the other is a PTK-independent, Ca2+-dependent pathway. Further, we observed that removal of extracellular Ca2+ caused cell shrinkage by diminishing the activity of the amiloride-sensitive Na+ channel and the bumetanide-sensitive Na+/K+/2Cl cotransporter, and that removal of extracellular Ca2+ abolished the activity of the quinine-sensitive K+ channel. We conclude that the cell shrinkage induced by removal of extracellular Ca2+ results from diverse effects on the cotransporter and Na+ and K+ channels. Received: 2 September 1998/Revised: 30 November 1998  相似文献   

10.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

11.
S.G. Lu  C. Tang  Z. Rengel 《Plant and Soil》2004,264(1-2):231-245
The combination effects of waterlogging and salinity on redox potential (Eh), pH, electric conductivity (EC), water-soluble cations (NH4 +, K+, Na+, Ca2+, Mg2+, Fe2+, and Mn2+) and water-dispersible clay (WDC) were studied in six soils collected near salt lakes in western Australia. The soils with various salinity levels were incubated under a waterlogged condition at 30 °C for 12 weeks. The Eh, pH, EC, and cations of soil solutions were monitored over the waterlogged period. The Eh values generally dropped to the lowest point within 12 days of waterlogging, then increased slightly, and reached equilibrium after 4 weeks of waterlogging. Increasing salinity levels increased soil Eh. While waterlogging increased soil pH in the first 3–4 weeks, increasing salinity level decreased soil pH during the entire waterlogging period. Waterlogging increased the EC values in the first 2 weeks, partly due to dissolution of insoluble salts. The concentrations of water-soluble NH4 + were significantly increased with salinity level and waterlogging, and reached maximum values at week 2, and then declined to the initial level. Waterlogging and salinity increased the concentrations of water-soluble K+, Ca2+, Mg2+, Fe2+, and Mn2+ ions, but the magnitudes of changes were greatly affected by soil properties. Increases in water-soluble K+, Ca2+ and Mg2+ were attributed to increased solubility of insoluble salts, and increased competition for the adsorption sites of the soil exchange complex due to elevated concentrations of Na+, Fe2+ and Mn2+. Increases in water-soluble Fe2+ and Mn2+ induced by waterlogging were attributed to the dissolution of Fe and Mn oxides under reduced conditions. Waterlogging increased, but salinity decreased, the amounts of water-dispersible clay in the soils of low EC value. The higher salinity level can counteract the adverse effect of waterlogging on clay flocculation.  相似文献   

12.
Wang X  Chi Z  Yue L  Li J 《Current microbiology》2007,55(5):396-401
The molecular mass of the purified killer toxin from the marine killer yeast YF07b was estimated to be 47.0 kDa. The optimal pH and temperature of the purified killer toxin were 4.5 and 40°C, respectively. The toxin was activated by Ca2+, K+, Na+, Mg2+, Na+, and Co2+. However, Fe2+, Fe3+, Hg2+, Cu2+, Mn2+, Zn2+, and Ag+ acted as inhibitors in decreasing activity of the toxin. The toxin was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, ethylenediaminetetraacetic acid, and 1,10-phenanthroline. The Km of the toxin for laminarin was 1.17 g L−1. The toxin also actively hydrolyzed laminarin and killed the whole cells of the pathogenic yeast in crab.  相似文献   

13.
Smectites, members1 of the 2:1 layer silicate family, share the common feature that two tetrahedral sheets sandwich a sheet of octahedrally coordinated metal ion. The diversity of the members of the 2:1 layer silicates occurs because of their capacity for isomorphous substitution of various cations in the octahedral or tetrahedral sheets. Substitution of a divalent metal ion (such as Mg2+) for the trivalent Al3+ or a trivalent metal ion (such as Al3+) for the tetravalent silicon results in a net negative charge, which then undergoes interaction with positive ions (the exchangeable cations) to form an interlayer hydrated phase. Local density functional (LDF) calculations were employed to model isomorphous substitution of Al3+ by Na+, K+, Mg2+, Fe2+, and Fe3+ in the octahedral layer of a dioctahedral smectite clay such as montmorillonite. The energies of the isomorphous substitution were then compared with the experimental observation. The ordering for successful substitution is Al3+ > Fe3+ > Mg2+ > Fe2+ > Na+ < K+. This ordering is consistent with experimental observation. The vibrational frequencies for the isomorphous substituted systems were calculated by LDF calculation and were compared with the experimental IR results. The results match very well with experiment. This understanding will help in successful prediction of the catalytic activity of smectite clays.  相似文献   

14.
Slicing and incubating rat liver caused a rapid Ca2+-independent exchange of K+ for Na+, followed by a Ca2+-dependent recovery. Freshly cut slices washed for 10 min in a Ca2+ medium containing equal concentrations of Na+ and K+ showed little replacement of K+ by Na+ during subsequent incubation in a normal medium. Changes in medium Ca2+ caused immediate changes in slice Na+ and K+, before any substantial change in slice Ca2+ and without altering gradients responsible for passive transfers of Na+ and K+. Ca2+ did not influence an ouabain-sensitive Na+ pump. It also appeared unlikely that Ca2+ was required for an ouabain-insensitive Na+ pump or for maintenance of intracellular structures concerned with K+ sorption, even if these mechanisms existed in the slices. Instead Ca2+ seemed to maintain the cell membrane relatively impermeable to Na+ and K+. An ouabain-sensitive Na+ pump not normally dependent on oxygen supply to the cells appeared to alter its activity according to the work required of it. Control of slice water content could not be attributed to the activity of this pump.  相似文献   

15.
Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

16.
Wright  David  Rajper  Inayatullah 《Plant and Soil》2000,223(1-2):279-287
Two wheat varieties were grown in artificially created sodic soils in pots at a range of sodicity levels (exchangeable sodium percentage (ESP) 15–52), with and without an anionic polyacrylamide soil conditioner (PAM) to stabilise soil aggregates. Increasing sodicity decreased the % water stable aggregates (% WSA) in soil and survival, grain and straw yield of wheat. Plants grown at high sodicity also had higher Na+, lower K+ and Ca2+ concentrations and lower K+/Na+ ratio in flag leaf sap than plants grown in control (non-sodic) soil. Sodicity had no effect on the concentrations of Cu2+, Fe2+, Mn2+ and Zn2+ in grains and straw, but total uptake of these micronutrients was deceased due to lower dry weight of these tissues per plant. At all sodicity levels treatment of sodic soil with PAM increased the % WSA to values greater than in the non-sodic control soil, and slightly lowered ESP. Over the range ESP 15–44 the effects of PAM on wheat grain yield increased as sodicity increased, so that at ESP 44 grain yield in the treatment with PAM was only 25% lower than in the non-sodic control. However at ESP 52 the effects of PAM were smaller, and grain yield was 86% lower than in the control. At this sodicity level the decreases in grain yield due to sodicity and the increases in reponse to treatment of sodic soil with PAM were similar in the two varieties tested. At high sodicity levels (ESP 44 and 52) treatment of sodic soil with PAM decreased the concentration of Na+ and increased K+ and K+/Na+ ratio in flag leaf sap. However, at the highest sodicity level (ESP 52), flag leaf Na+ concentration remained above the level (100 mol m-3) at which it has been found to be toxic. Concentrations of Cu2+, Fe2+, Mn2+ and Zn2+ in grain and straw were unaffected by PAM. These results suggest that at ESP up to 40–50 adverse physical characteristics are the major cause of low wheat yield in sodic soils, either due to their direct effects in decreasing growth, or their indirect effects in increasing uptake of Na+ and decreasing uptake of K+. Above ESP 50, roots are less able to exclude Na+, even in the presence of improved soil physical conditions, so that at these sodicity levels, both adverse physical and adverse chemical properties contribute to the decreased yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In this review we summarize mutagenesis work on the structure–function relationship of transmembrane segment M1 in the Na+,K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase. The original hypothesis that charged residues in the N-terminal part of M1 interact with the transported cations can be rejected. On the other hand hydrophobic residues in the middle part of M1 turned out to play crucial roles in Ca2+ interaction/occlusion in Ca2+-ATPase and K+ interaction/occlusion in Na+,K+-ATPase. Leu65 of the Ca2+-ATPase and Leu99 of the Na+,K+-ATPase, located at homologous positions in M1, function as gate-locking residues that restrict the mobility of the side chain of the cation binding/gating residue of transmembrane segment M4, Glu309/Glu329. A pivot formed between a pair of a glycine and a bulky residue in M1 and M3 seems critical to the opening of the extracytoplasmic gate in both the Ca2+-ATPase and the Na+,K+-ATPase. All numbering of Na+,K+-ATPase amino acid residues in this article refers to the sequence of the rat α1-isoform.  相似文献   

18.
《Process Biochemistry》2007,42(10):1371-1377
By combining two functions of alginate gel and activated carbon, an activated carbon-containing alginate bead (AC-AB) adsorbent was developed and successfully used to simultaneously remove heavy metal ions and toxic organics. Quantitative analysis showed that almost all of the adsorption of toxic organics, such as p-toluic acid, is caused by the activated carbon in the AC-AB adsorbent, whereas the alginate component has a major role in the removal of heavy metals. A 50-L solution containing eight heavy metals (Pb2+, Mn2+, Cd2+, Cu2+, Zn2+, Fe2+, Al3+ and Hg2+) and four mineral ions was run continuously through a filter cartridge packed with 160 g of the AC-AB adsorbent. The adsorbent showed a high capacity to remove heavy metals completely from the water, while allowing essential minerals, such as K+, Na+, Mg2+ and Ca2+, to pass through the filter. The adsorbent could be regenerated using eluents, such as HNO3, and reused repeatedly without considerable loss of its metal uptake capacity through 10 subsequent cycles of adsorption and desorption. With its high capacity and high selectivity for toxic heavy metals, the AC-AB adsorbent has enormous potential for application in drinking water treatment technologies.  相似文献   

19.
Effect of soil salinity was studied in two maize (Zea mays L.) genotypes, DTP-w-c 9 (comparatively tolerant) and Prabhat (susceptible) under control and three levels of salinity at vegetative and anthesis stages during summer–rainy season. Salinity stress decreased relative water content (RWC), chlorophyll (Chl) and carotenoid (Car) contents, membrane stability index (MSI), potassium (K+) and calcium (Ca2+) contents, and increased the rate of superoxide radical (O2·−) production, contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), proline, glycine-betaine, total soluble sugars, sodium (Na+), and Na+/K+ and Na+/Ca2+ ratios in both the genotypes. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) increased up to S2 salinity level in both the genotypes, and up to highest salinity level (S3) in DTP-w-c 9 at the two stages. Salinity-induced decrease in RWC, Chl, Car, MSI, K+ and Ca2+ was significantly greater in Prabhat, which also recorded higher Na+ content and Na+/K+ and Na+/Ca2+ ratios than DTP-w-c 9. DTP-w-c 9 recorded higher contents of proline, glycine-betaine, total soluble sugars, K+, Ca2+, activity of SOD, APX, CAT, GR, and comparatively lower O2·−, H2O2 and TBARS contents compared to Prabhat. Results show that salinity tolerance of DTP-w-c 9, as manifested by less decrease in RWC, Chl, Car and MSI, is associated with maintenance of adequate levels of K+ and Ca2+, greater contents of osmolytes, higher antioxidant enzymes activity, and lower O2·−, H2O2, TBARS and Na+ contents than Prabhat.  相似文献   

20.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号