首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Stamp, P. 1987. Seedling development of adapted and exotic maizegenotypes at severe chilling stress.—J. exp. Bot. 38:1336–1342. Four maize genotypes from North West Europe (NWE), tropicalhighlands (TH) and tropical lowlands (TL) were grown at 24°Cuntil full expansion of the second leaf. Seedlings were subjectedto 5°C during 2 d thereafter, with or without a previousconditioning phase at 10°C for 4 d. After stress, seedlingswere allowed to recover at 24°C for 5 d. All genotypes resumedhigh growth rates after stress, highest values were observedfor one TH genotype. Previous conditioning was most effectivein TL and least effective in TH genotypes. In spite of similaritiesbetween patterns of growth rates and rates of leaf expansionthe latter process was less promoted by previous conditioning.The green area of the second leaf was little impaired by 5°Cin most genotypes. But without conditioning the TL genotypelost about 40% green leaf area, mostly during the recovery phase.Conditioning did not prevent losses in relative turgidity ofsecond leaves during stress but it enabled sensitive genotypesto resume normal values during recovery. Losses in phosphofructokinaseactivity occurred in the TL genotype during stress and recovery,and in TH genotypes during recovery while the activity was stablein the NWE genotype. A close relationship between this enzymeactivity and growth rates was not observed. Although one THgenotype had the best chilling tolerance on the whole plantlevel the expression of some physiological and biochemical leaftraits was inferior to the adapted NWE genotype. Key words: Low temperature, exotic germplasm, phosphofructokinase activity  相似文献   

2.
Four inbred maize lines differing in chilling tolerance were used to study changes in water status and abscisic acid (ABA) levels before, during and after a chilling period. Seedlings were raised in fertilized soil at 24/22°C (day/night), 70% relative humidity. and a 12-h photoperiod with 200 μmol m−2 s−1 from fluorescent tubes. At an age of 2 weeks the plants were conditioned at 14/12°C for 4 days and then chilled for 5 days at 5/3°C. The other conditions (relative humidity, quantum flux, photoperiod) were unchanged. After the chilling period the plants were transferred to the original conditions for recovery. The third leaves were used to study changes in leaf necrosis, ion efflux, transpiration, water status and ABA accumulation. Pronounced differences in chilling tolerance between the 4 lines as estimated by necrotic leaf areas, ion efflux and whole plant survival were observed. Conditioning significantly increased tolerance against chilling at 5/3°C in all genotypes. The genotypes with low chilling tolerance had lower water and osmotic potentials than the more tolerant genotypes during a chilling period at 5/3°C. These differences were related to higher transpiration rates and lower diffusive resistance values of the more susceptible lines. During chilling stress at 5/3°C ABA levels were quadrupled. Only a small rise was measurable during conditioning at 14/12°C. However, conditioning enhanced the rise of ABA during subsequent chilling. ABA accumulation in the two lines with a higher chilling tolerance was triggered at a higher leaf water potential and reached higher levels than in the less tolerant lines. We conclude that chilling tolerance in maize is related to the ability for fast and pronounced formation of ABA as a protective agent against chilling injury.  相似文献   

3.
Five-week-old plants of Echinochloa crusgalli (L.) Beauv. from Mississippi and from Québec grown under controlled conditions were subjected to dark chilling for 10 h at 5°C or light chilling treatments for 14 h at 7°C under hight light (1 000 μmol m−2 s−1). The activities of four C4 enzymes of Québec plants, measured 4 h after the completion of the cold treatment, were not affected by the chilling treatment in the dark. The activities of pyruvate, Pi dikinase (PPDK; EC 2.7.9.1) and NADP+-malic enzyme (NADP+-ME; EC 1.1.1.40), were significantly reduced in dark-chilled Mississippi plants. Chilling under high light conditions elicited significant levels of reduction in the activities of the four enzymes from both ecotypes but the reductions were significantly less severe for Québec plants. The recovery of activities of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and PPDK for both ecotypes was completed within 36 to 60 hours following the chilling treatment, but NADP+-malate dehydro-genase (NADP+-MDH; EC 1.1.1.82) and NADP+-ME activities of chilled Mississippi plants remained below that of control plants at the end of the 5-day monitoring period. PPDK was inactivated in vitro at 0 and 10°C and the rates of cold inactivation were significantly higher for PPDK extracted from Mississippi plants. The activity of PEPC of Mississippi extracts was slightly, but significantly reduced by a 60 min treatment at 0°C.  相似文献   

4.
Abstract: Seedlings of Zea mays L. were grown at optimal (25 °C) and suboptimal (15 °C) temperature and then exposed to severe chilling temperature (6 °C) at their growth light intensity (450 ìmol quanta m−2 s−1) for 4 d. Photosynthetic parameters, hydrogen peroxide, antioxidant contents, and activity of scavenging enzymes were investigated before, during, and after chilling stress. This stress caused a stronger reduction in photosynthetic activity, maximum quantum efficiency of photosystem II primary photochemistry ( F v/ F m), and catalase activity in plants which had been grown at 25 °C rather than at 15 °C. Maize plants grown at suboptimal temperature de-epoxidized their xanthophyll cycle pool to a greater extent and exhibited a faster recovery from chilling stress than plants which had not been acclimated to chilling. Antioxidant content, activity of scavenging enzymes, with the exception of catalase, hydrogen peroxide formation, and the size of the xanthophyll cycle pool were hardly affected by chilling stress. However, chilling induced a temporary increase in the glutathione content and triggered the synthesis of á-tocopherol during the phase of recovery at 25 °C. The results indicate that leaves respond to chilling stress by down-regulation of photosystem II accompanied by de-epoxidation of the xanthophyll cycle pool, probably to prevent enhanced formation of superoxide radicals at photosystem I and, consequently, other reactive oxygen species.  相似文献   

5.
The effect of chilling on diurnal changes in activity of adenosine 5'-phosphosulfate sulfotransferase, glutathione reductase (EC 1.6.4.2) and glutathione transferase (EC 2.5.1.18) was analysed in the second leaf of Z 7, a chilling-tolerant, and Penjalinan, a chilling-sensitive maize (Zea mays L.) genotype. Nitrate reductase (EC 1.6.6.1) was measured for comparison. All enzyme activities examined changed with a typical diurnal rhythm in both genotypes cultivated at 25°C. Adenosine 5'-phosphosulfate sulfotransferase and nitrate reductase activity peaked during the light period, then decreased and reached lowest levels at the end of the dark period. Glutathione reductase activity increased in the dark and decreased during the light period. Maximum glutathione transferase activities were measured in the middle of the light period, minimal ones in the middle of the dark period. At 12°C these diurnal changes were eliminated in all enzymes examined of both genotypes.
The average adenosine 5'-phosphosulfate sulfotransferase and glutathione reductase activity were higher in the chilling-tolerant Z 7 than in the sensitive Penjanilan at 12°C in the light. Increased levels of both enzymes may contribute in establishing increased levels of cysteine and reduced glutathione in the chilling-tolerant Z 7. Indeed it has been shown before that the chilling-tolerant maize genotypes contain higher levels of both compounds at low temperatures than chilling-sensitive ones.  相似文献   

6.
In the experiments reported in this paper, we characterised the physiological and biochemical factors involved in the chilling-induced inhibition of photosynthetic carbon metabolism in soybean [Glycine max (L.) Merr.] genotypes of temperate and tropical adaptation. Plants of Maple Arrow (temperate genotype) and Java 29 (tropical genotype) were exposed to a single night at 8 degrees C. Dark chilling resulted in the inhibition of diurnal CO2 assimilation rate and decreased stomatal conductance in both genotypes. Further analysis, however, revealed a difference in the response of the two genotypes. Stomatal limitation was largely responsible for the inhibition of CO2 assimilation in Maple Arrow, whereas mesophyll limitation dominated the inhibition in Java 29. The results indicate that inhibition of stromal fructose-1,6-bisphosphatase (sFBPase; EC 3.1.3.11) activity and impaired electron transport capacity were responsible for the decrease in ribulose-1,5-bisphosphate (RuBP) regeneration capacity in Java 29. Sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity was progressively inhibited during the light period in this genotype and might impose an additional constraint on photosynthesis. Maple Arrow appears to possess, at least with respect to photosynthetic carbon metabolism, physiological and biochemical characteristics that contribute towards its superior dark chilling tolerance.  相似文献   

7.
Six inbred lines of maize ( Zea mays L.) from cool temperate regions (C) and from warm regions (W) were grown at 14, 22, 30 and 38°C up to the same physiological age, the full expansion of the third leaf. Generally, plants developed smaller shoot dry weights and leaf areas at extreme temperatures. The shoot:root ratio was lowest at 22°C and highest at 30°C. Most lines had a minimum for specific leaf dry weight at 30°C, but W lines had a second lower minimum at 14°C. Phosphofructokinase activity scarcely reacted to temperature between 22° and 38°C; at 14°C one C line and all W lines had rather low activities. Generally, the chlorophyll content increased steeply from 14 to 22°C and decreased somewhat from 30 to 38°C. In C lines the carotenoid level decreased from 14 to 38°C. No uniform temperature response was found for PEP carboxylase activity, but the highest activity was mostly attained at 38°C. RuBP carboxylase activity increased considerably from 14 to 22°C and remained comparatively constant at higher temperatures. The highest activity of NADP malate dehydrogenase was found at 22°C, with a decrease up to 38°C and with second lowest values at 14°C. C lines possessed larger leaf areas, shoot dry weights and higher shoot:root ratios than W lines at 14 and 22°C, and higher specific leaf dry weights over the whole temperature range. The genotypic pattern of shoot dry weight at 14°C corresponded reasonably well with that of phosphofructokinase activity. A better adaptation of C lines to suboptimal temperatures was mostly clearly indicated for photosynthetic traits which have a well proven relationship with the chloroplast membranes: chlorophyll, carotenoids and RuBP carboxylase. The least distinct effects of origin were observed at 38°C; a tendency prevailed for a better performance of C lines with regard to phosphofructokinase, carotenoids, RuBP carboxylase and NADP malate dehydrogenase.  相似文献   

8.
In the present research we studied the photosynthetic traits and protective mechanisms against oxidative stress in two maize ( Zea mays L.) genotypes differing in chilling sensitivity (Z7, tolerant and Penjalinan, sensitive) subjected to 5°C for 5 days, with or without pretreatment by drought. The drought pretreatment decreased the symptoms of chilling injury in Penjalinan plants estimated as necrotic leaf area and maximum quantum yield of photosystem II. Furthermore, drought pretreatment diminished the level of lipid peroxidation caused by chilling in Penjalinan plants. After one day of recovery from chilling the Z7 and drought-pretreated Penjalinan plants showed higher net photosynthesis rates than the non-drought-pretreated Penjalinan plants, thereby decreasing the probability of generating reactive oxygen species. The greater net photosynthesis was correlated with the greater NADP-malate dehydrogenase activity. No differences in either the de-epoxidation state of the xanthophyll cycle or the antioxidant enzyme activities were found among the chilled groups of plants. However, a drastic decrease in ascorbate content was observed in chilled Penjalinan plants without drought pretreatment. As we found an increase of H2O2 content after drought pretreatment, we suggest its involvement as a signal in the drought-enhanced chilling tolerance of maize.  相似文献   

9.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   

10.
11.
Abstract Ribulose-1,5-biphosphate carboxylase (RuBPCase) partially purified from the thermophilic purple bacterium Chromatium tepidum displayed maximum carboxylase activity at 50°C, while enzyme from a related mesophilic species, Chromatium vinosum , was completely inactive at 50°C. RuBPCase from C. tepidum showed ribulose-1,5- bisphosphate-dependent oxygenase activity, and, in addition, O2 was found to partially destroy carboxylase activity. It is concluded that thermophilic purple bacteria produce heat-stable RuBPCase and that all RuBPCases, even those from an obligate anaerobe such as C. tepidum , have associated oxygenase activity.  相似文献   

12.
Two common bean (Phaseolus vulgaris L.) genotypes differing in aluminum (Al) resistance, Quimbaya (Al‐resistant) and VAX‐1 (Al‐sensitive) were grown in hydroponics for up to 25 h with or without Al, and several parameters related to the exudation of organic acids anions from the root apex were investigated. Al treatment enhanced the exudation of citrate from the root tips of both genotypes. However, its dynamic offers the most consistent relationship between Al‐induced inhibition of root elongation and Al accumulation in and exclusion from the root apices. Initially, in both genotypes the short‐term (4 h) Al‐injury period was characterized by the absence of citrate efflux independent of the citrate content of the root apices, and reduction of cytosolic turnover of citrate conferred by a reduced Nicotinamide adenine dinucleotide phosphate–isocitrate dehydrogenase (EC 1.1.1.42) activity. Transient recovery from initial Al stress (4–12 h) was found to be dependent mainly on the capacity to utilize internal citrate pools (Al‐resistant genotype Quimbaya) or enhanced citrate synthesis [increased activities of NAD‐malate dehydrogenase (EC 1.1.1.37) and ATP‐phosphofructokinase (EC 2.7.1.11) in Al‐sensitive VAX‐1]. Sustained recovery from Al stress through citrate exudation in genotype Quimbaya after 24 h Al treatment relied on restoring the internal citrate pool and the constitutive high activity of citrate synthase (CS) (EC 4.1.3.7) fuelled by high phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity. In the Al‐sensitive genotype VAX‐1 the citrate exudation and thus Al exclusion and root elongation could not be maintained coinciding with an exhaustion of the internal citrate pool and decreased CS activity.  相似文献   

13.
The effect of genotype and ploidy on RuBP carboxylase (EC 4.1.1.39) activity, chlorophyll content, leaf area, chloroplast ultrastructure and not photosynthesis among monoploid. diploid and tetraploid anther-derived plants of Solanum phureja Juz, and Buk. was studied. Within the monoploid group, RuBP carboxylase activity and concentration displayed a significant genotypic effect. For the diploids, variation among genotypes was significant for total protein content and maximum specific activity of RuBP carboxylase, and among the tetraploids for net photosynthesis and specific leaf weight. Ploidy effect was evident regarding net photosynthesis, leaf area and chlorophyll content. The different ploidy groups among the anther-derived plants surpassed the anther donor plant for all characteristics except maximum activity of RuBP carboxylase and net photosynthesis. For the latter only the tetra-ploid group was superior to the anther source plant. However, a monoploid genotype with an increase of 9% in maximum activity of RuBP carboxylase over the anther-donor plant was identified. Segregation of trails rind differential gene expression together with possible mutations during androgenesis are discussed as sources of variation.  相似文献   

14.
15.
Banana is a tropical crop cultivated in warm places. Chilling stress in Egypt is making banana crops less productive. Abscisic acid (ABA), a key plant hormone, regulates metabolic and physiological processes and protects plants from a variety of stresses. In vitro growing banana shoots were pre-treated with ABA at four concentrations (0, 25, 50, and 100 mM) and chilled at 5°C for 24 h, followed by a six-day recovery period at 25°C. By comparing ABA treatments to both positive and negative controls, physiological and biochemical changes were investigated. Chilling stress (5°C) caused a considerable increase in lipid peroxidation and ion leakage and reduced photosynthetic pigments in cold-treated plantlets. Increasing the concentration of ABA to 100 µM enhanced the response to chilling stress. ABA had a major effect on mitigating chilling injury in banana shoots by keeping cell membranes stable and lowering the amount of ion leakage and lipid peroxidation. Also, ABA significantly maintained the photosynthetic pigment concentration of banana shoots; accumulated higher amounts of total soluble carbohydrates and proline; and increased DPPH radical scavenging activity. Furthermore, ABA treatment enhanced cold tolerance in chilling-stressed banana shoots through the regulation of antioxidant enzyme activity. Overall, the results show that ABA is a good choice for protecting banana shoots from the damage caused by chilling stress.  相似文献   

16.
The decrease in extractable activity of ribuloscbisphosphate carboxylase (EC 4.1.1.39), ATP sulfurylase (EC 2.7.7.4) and adenosine 5'-phosphosulfate sulfotransferase and the content in chlorophyll and protein was compared in leaves of cloned beech trees ( Fagus sylvatica L.) during autumnal senescence. Leaves excised at the same time but containing different amounts of chlorophyll gave extracts with correspondingly varying amounts of ribulosebisphosphate carboxylase activity. Leaves which had almost completely lost this enzyme activity contained still appreciable ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase activity and soluble protein. For all components determined, there was a period lasting until mid or end of October during which there was no or only a small decrease. They were then all lost rapidly from the leaves. The specific activity of ribulosebisphosphate carboxylase decreased during this phase of rapid loss, whereas it remained essentially constant for ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase. During this period, the mean half life of ribulosebisphosphate carboxylase was shorter than the one of ATP sulfurylase and of adenosine 5'-phosphosulfate sulfotransferase. These experiments clearly show that ribulosebisphosphate carboxylase was preferentially lost from beech leaves during autumnal senescence as compared to ATP sulfurylase and adenosine 5'-phosphosulfate sulfotransferase.  相似文献   

17.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   

18.

FBPase, fructose-1,6-bisphosphatase
NADP-MDH, NADP-malate dehydrogenase
NADP-ME, NADP-malic enzyme
OAA, oxaloacetic acid
PEP, phosphoenolpyruvate
PEPcase, phosphoenolpyruvate carboxylase
PPDK, pyruvate orthophosphate dikinase
Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase

The aim of this study was to investigate the mechanism of photosynthetic changes in sugarcane leaves in response to chilling temperature by using three species ( Saccharum sinense R. cv. Yomitanzan, Saccharum sp. cv. NiF4 and Saccharum officinarum L. cv. Badira) differing in origin and cold sensitivity. Yomitanzan is native to subtropical areas, Badira is native to tropical areas and NiF4 is a hybrid species containing genes of both tropical and subtropical species. At exposure to chilling temperature (10 °C), the photosynthetic rate in the leaves at either 10 °C or 30 °C showed a greater decrease in Badira than in NiF4 and Yomitanzan. After 28 h exposure of plants to the chilling temperature, the extractable activities of pyruvate, orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (NADP-MDH) increased or were relatively stable in the leaves of NiF4 and Yomitanzan, but decreased substantially in Badira. Correspondingly, there was a substantial accumulation of aspartate, and the level of alanine increased in Badira leaves during the chilling treatment. It is suggested that NADP-MDH and PPDK are key enzymes which may determine the cold sensitivity in photosynthesis of sugarcane.  相似文献   

19.
The effects of separately or simultaneously induced dark chilling and drought stress were evaluated in two Glycine max (L.) Merrill cultivars. For the separately induced dark chilling treatment (C), plants were incubated at 8 °C during 9 consecutive dark periods. During the days, plants were kept at normal growth temperatures. For the separately induced drought treatment (D), plants were maintained at normal growth temperatures without irrigation. For the simultaneously induced dark chilling and drought stress treatment (CD), plants were dark chilled without irrigation. All treatments caused similar decreases in pre-dawn leaf water potential, but resulted in distinct physiological and biochemical effects on photosynthesis. In Maple Arrow, where C had the smallest effect on photosynthesis, prolonged CD caused less inhibition of photosynthesis compared to D. Compared to Fiskeby V, the photosynthetic apparatus of Maple Arrow appears to possess superior dark chilling tolerance, a property which probably also conveyed enhanced protection against CD. Proline accumulation was prevented by CD at the ψPD where D already resulted in considerable accumulation. The superior capacity for proline accumulation in Maple Arrow would seem to be an important factor in its stress tolerance. Antioxidant activity evoked by CD and D was higher than for C alone. In Fiskeby V, the small increase in ascorbate peroxidase (EC 1.11.1.7) activity, which was in most cases not accompanied by increased gluthatione reductase (EC 1.6.4.2) activity, could impact negatively on its stress tolerance. These results demonstrate large genotypic differences in response to chilling and drought stress, even between soybean cultivars regarded as chilling tolerant.  相似文献   

20.
We examined whether the expression of wheat catalase (EC 1.11.1.6) cDNA in transgenic rice ( Oryza sativa L.) could enhance tolerance against low temperature injury. Transgenic rice plants expressing wheat CAT protein showed an increase of activities in leaves at 25°C, 2- to 5-fold that in non-transgenic rice. At 5°C, catalase activities were about 4–15 times higher than those in non-transgenic rice were. A comparison of damage observed in leaves as they withered due to chilling at 5°C showed that transgenic rice displayed an increased capability to resist low temperature stress. The exposure of these plants to low temperature at 5°C for 8 days resulted in decreased catalase activities in leaves at 25°C, but the transgenic plants indicated 4 times higher residual catalase activities than those of non-transgenic ones. The concentration of H2O2 in leaves was kept lower in transgenic rice than that of the control plants during the 8 days chilling. These results suggest that the improved tolerance against low temperature stress in genetically engineered rice plants be attributed to the effective detoxification of H2O2 by the enhanced catalase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号